In a recent paper, a novel coding of the Ghost Fluid Method for the variable coefficient Poisson equation with discontinuous functions (named GFMxP) was proposed. A lot of numerical tests, with all the required quantities available in a analytic form, were used to demonstrate the ability of the new procedure in modeling a sharp interface and to check the accuracy order of the solutions. In practical applications, however, the real difficulty stands in the estimation of the so-called “ghost values”, that is the values at points where the function is not only unknown, but even not defined. These values allow to compute the corrective terms enabling the use of standard finite difference formulas in presence of a singularity and/or a discontinuity, and can be only determined through some extrapolation procedure, whose truthfulness is essential to achieve a reliable result. The paper deals with such a basic issue, by testing different numerical strategies and demonstrating the strict relationship between the order of the adopted fit-model, the order of the solving scheme for the Poisson equation and the accuracy of the final solution.

The GFMxP and the basic extrapolation of the ghost values to solve the Poisson equation for discontinuous functions

Ianniello, Sandro
2024

Abstract

In a recent paper, a novel coding of the Ghost Fluid Method for the variable coefficient Poisson equation with discontinuous functions (named GFMxP) was proposed. A lot of numerical tests, with all the required quantities available in a analytic form, were used to demonstrate the ability of the new procedure in modeling a sharp interface and to check the accuracy order of the solutions. In practical applications, however, the real difficulty stands in the estimation of the so-called “ghost values”, that is the values at points where the function is not only unknown, but even not defined. These values allow to compute the corrective terms enabling the use of standard finite difference formulas in presence of a singularity and/or a discontinuity, and can be only determined through some extrapolation procedure, whose truthfulness is essential to achieve a reliable result. The paper deals with such a basic issue, by testing different numerical strategies and demonstrating the strict relationship between the order of the adopted fit-model, the order of the solving scheme for the Poisson equation and the accuracy of the final solution.
2024
Istituto di iNgegneria del Mare - INM (ex INSEAN)
Discontinuous functions
Ghost Fluid method
Multiphase flows simulation
Poisson equation
Sharp interface modeling
File in questo prodotto:
File Dimensione Formato  
Ianniello_2024-GhostPoints.pdf

solo utenti autorizzati

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 8.32 MB
Formato Adobe PDF
8.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/517818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact