Twelve Hector events, a storm which develops in northern Australia, are analyzed with the aim of identifying the main meteorological parameters involved in the storm’s convective development. Based on Crook’s ideal study (Crook, 2001), wind speed and direction, wind shear, water vapor, convective available potential energy and type of convection are the parameters used for this analysis. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and high-resolution simulations from the Fifth-Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to connect the mean vertical velocity to the total condensate at the maximum stage and to study the dynamics of the storms. The ECMWF analyses are used to evaluate the initial conditions and the environmental fields contributing to Hector’s development. The analysis suggests that the strength of convection, defined in terms of vertical velocity, largely contributes to the vertical distribution of hydrometeors. The role of total condensate and mean lifting versus low-level moisture, convective available potential energy, surface wind and direction is analyzed for shear and no-shear conditions to evaluate the differences between type A and B for real events. Results confirm the tendency suggested by Crook’s analysis. However, Crook’s hypothesis of low-level moisture as the only parameter that differentiates between type A and B can only be applied if the events develop in the same meteorological conditions. Crook’s tests also helped to assess how the meteorological parameters contribute to Hector’s development in terms of percentage.

Seeking for key meteorological parameters to better understand Hector

S. Gentile
;
2015

Abstract

Twelve Hector events, a storm which develops in northern Australia, are analyzed with the aim of identifying the main meteorological parameters involved in the storm’s convective development. Based on Crook’s ideal study (Crook, 2001), wind speed and direction, wind shear, water vapor, convective available potential energy and type of convection are the parameters used for this analysis. Both the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and high-resolution simulations from the Fifth-Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to connect the mean vertical velocity to the total condensate at the maximum stage and to study the dynamics of the storms. The ECMWF analyses are used to evaluate the initial conditions and the environmental fields contributing to Hector’s development. The analysis suggests that the strength of convection, defined in terms of vertical velocity, largely contributes to the vertical distribution of hydrometeors. The role of total condensate and mean lifting versus low-level moisture, convective available potential energy, surface wind and direction is analyzed for shear and no-shear conditions to evaluate the differences between type A and B for real events. Results confirm the tendency suggested by Crook’s analysis. However, Crook’s hypothesis of low-level moisture as the only parameter that differentiates between type A and B can only be applied if the events develop in the same meteorological conditions. Crook’s tests also helped to assess how the meteorological parameters contribute to Hector’s development in terms of percentage.
2015
Istituto di Metodologie per l'Analisi Ambientale - IMAA
convection, mesoscale model, storm
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518330
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact