In this study, we delve into the adaptation and effectiveness of Transformer-based, pre-trained Large Language Models (LLMs) within the biomedical domain, a field that poses unique challenges due to its complexity and the specialized nature of its data. Building on the foundation laid by the transformative architecture of Transformers, we investigate the nuanced dynamics of LLMs through a multifaceted lens, focusing on two domain-specific tasks, i.e., Natural Language Inference (NLI) and Named Entity Recognition (NER). Our objective is to bridge the knowledge gap regarding how these models’ downstream performances correlate with their capacity to encapsulate task-relevant information. To achieve this goal, we probed and analyzed the inner encoding and attention mechanisms in LLMs, both encoder- and decoder-based, tailored for either general or biomedical-specific applications. This examination occurs before and after the models are fine-tuned across various data volumes. Our findings reveal that the models’ downstream effectiveness is intricately linked to specific patterns within their internal mechanisms, shedding light on the nuanced ways in which LLMs process and apply knowledge in the biomedical context. The source code for this paper is available at https://github.com/agnesebonfigli99/LLMs-in-the-Biomedical-Domain.

From pre-training to fine-tuning: An in-depth analysis of Large Language Models in the biomedical domain

Bonfigli A.;Merone M.;Dell'Orletta F.
2024

Abstract

In this study, we delve into the adaptation and effectiveness of Transformer-based, pre-trained Large Language Models (LLMs) within the biomedical domain, a field that poses unique challenges due to its complexity and the specialized nature of its data. Building on the foundation laid by the transformative architecture of Transformers, we investigate the nuanced dynamics of LLMs through a multifaceted lens, focusing on two domain-specific tasks, i.e., Natural Language Inference (NLI) and Named Entity Recognition (NER). Our objective is to bridge the knowledge gap regarding how these models’ downstream performances correlate with their capacity to encapsulate task-relevant information. To achieve this goal, we probed and analyzed the inner encoding and attention mechanisms in LLMs, both encoder- and decoder-based, tailored for either general or biomedical-specific applications. This examination occurs before and after the models are fine-tuned across various data volumes. Our findings reveal that the models’ downstream effectiveness is intricately linked to specific patterns within their internal mechanisms, shedding light on the nuanced ways in which LLMs process and apply knowledge in the biomedical context. The source code for this paper is available at https://github.com/agnesebonfigli99/LLMs-in-the-Biomedical-Domain.
2024
Istituto di linguistica computazionale "Antonio Zampolli" - ILC
Biomedical domain
Domain adaptation
Large Language Models
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0933365724002458-main-1.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.99 MB
Formato Adobe PDF
5.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact