Surface modification with CoFe-based overlayers has been widely studied to improve the performance of WO3/BiVO4 photoanodes for photoelectrochemical water oxidation because such overlayers can increase the photocurrent and shift the onset potential to more favorable values. Herein, we present a transient absorption spectroscopic analysis of WO3/BiVO4 photoanodes coated with cobalt iron oxide or cobalt iron Prussian blue overlayers, designed to establish the underlying mechanisms for these enhancements on the picosecondto- second time scale. The data reveal that the overlayer suppresses recombination of trapped holes in BiVO4, with free and trapped electrons, and accepts photogenerated holes. These results show that the observed boost in efficiency for water oxidation can be explained by the dual role of the overlayer in inhibiting charge recombination and enhancing charge extraction.
Impact of Co-Fe Overlayers on Charge Carrier Dynamics at WO3/BiVO4 Heterojunctions: A Picosecond-to-Second Spectroscopic Analysis
Ruani F.;Mazzaro R.
;Boscherini F.;Ventura B.;Armaroli N.;
2024
Abstract
Surface modification with CoFe-based overlayers has been widely studied to improve the performance of WO3/BiVO4 photoanodes for photoelectrochemical water oxidation because such overlayers can increase the photocurrent and shift the onset potential to more favorable values. Herein, we present a transient absorption spectroscopic analysis of WO3/BiVO4 photoanodes coated with cobalt iron oxide or cobalt iron Prussian blue overlayers, designed to establish the underlying mechanisms for these enhancements on the picosecondto- second time scale. The data reveal that the overlayer suppresses recombination of trapped holes in BiVO4, with free and trapped electrons, and accepts photogenerated holes. These results show that the observed boost in efficiency for water oxidation can be explained by the dual role of the overlayer in inhibiting charge recombination and enhancing charge extraction.File | Dimensione | Formato | |
---|---|---|---|
vecchi-et-al-2024-impact-of.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.