UN estimated that the world population will probably grow by 75% in 2050. This will press food and energy production to satisfy human needs. In recent years, the agricultural and energy sectors have been in competition for land use, as many arable lands have been changed in photovoltaic (PV) farms with a loss of food production and ecosystem services. Indeed, in many PV farms the flora is ruderal, with the prevalence of nitrophilous-type plants, and requires frequent mowing with a cost for the companies to prevent panel shading and reduce fire risk. The agrivoltaics system represents a new frontier for renewable energy policy, by associating energy production with food security. The agrivoltaics system combines the PV panels installation with the possibility to develop crop production under them. This provides a new perspective of vegetation management in the agrivoltaics field, mainly allowing to replace invasive plants (passive vegetation management) into crop production (active vegetation management). This allows the implementation of food production and raw material, besides the improvement of ecosystem services provisioning. In this study, we estimated the ecosystem services increase by three agricultural scenarios of agrivoltaics systems, such as vegetables vegetation and woods vegetation. The results show that these potential solutions can give the possibility to generate new economic activities in agrivoltaics farms with potential benefits from a local scale (e.g., cultural services) to a global one (e.g., regulation services). In the agrivoltaics system, the provisioning of ecosystem services is deviated by the feedback of agricultural knowledge, PV technologies and vegetation development. They represent Innovativebased Solutions creating more landscape and environmental externality for human needs through multifunctional land use.

Increase of landscape ecosystem services generated by agrivoltaics systems

Teodoro Semeraro
Primo
;
Aurelia Scarano
2024

Abstract

UN estimated that the world population will probably grow by 75% in 2050. This will press food and energy production to satisfy human needs. In recent years, the agricultural and energy sectors have been in competition for land use, as many arable lands have been changed in photovoltaic (PV) farms with a loss of food production and ecosystem services. Indeed, in many PV farms the flora is ruderal, with the prevalence of nitrophilous-type plants, and requires frequent mowing with a cost for the companies to prevent panel shading and reduce fire risk. The agrivoltaics system represents a new frontier for renewable energy policy, by associating energy production with food security. The agrivoltaics system combines the PV panels installation with the possibility to develop crop production under them. This provides a new perspective of vegetation management in the agrivoltaics field, mainly allowing to replace invasive plants (passive vegetation management) into crop production (active vegetation management). This allows the implementation of food production and raw material, besides the improvement of ecosystem services provisioning. In this study, we estimated the ecosystem services increase by three agricultural scenarios of agrivoltaics systems, such as vegetables vegetation and woods vegetation. The results show that these potential solutions can give the possibility to generate new economic activities in agrivoltaics farms with potential benefits from a local scale (e.g., cultural services) to a global one (e.g., regulation services). In the agrivoltaics system, the provisioning of ecosystem services is deviated by the feedback of agricultural knowledge, PV technologies and vegetation development. They represent Innovativebased Solutions creating more landscape and environmental externality for human needs through multifunctional land use.
2024
Istituto di Ricerca sugli Ecosistemi Terrestri - IRET
Istituto di Scienze delle Produzioni Alimentari - ISPA - Sede Secondaria di Lecce
ecosystem services, agrivoltaics systems
File in questo prodotto:
File Dimensione Formato  
matecconf_wmcaus2023_16001.pdf

accesso aperto

Licenza: Creative commons
Dimensione 474.12 kB
Formato Adobe PDF
474.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/518751
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact