This study focused on isolating and characterising autochthonous lactic acid bacteria (LAB) from spontaneously fermented Chinese bayberry (CB) and their potential application in CB wine fermentation in co-inoculation with yeast starter cultures. Numerous LAB, including Lactiplantibacillus (Lp.) plantarum (9), Limosilactobacillus (Lb.) fermentum (6), Lactococcus (Lc.) lactis (3), Enterococcus (Ec.) hirae (1), Leuconostoc (Le.) mesenteroides (1), and Weissella (Ws.) cibaria (1), were isolated and identified. The isolated strains Lp. plantarum ZFM710 and ZFM715, together with Lb. fermentum ZFM720 and ZFM722, adapted well to unfavourable fermentation environment, including ethanol, osmolality, and acidity stresses, were selected for producing CB wine by co-inoculation with Saccharomyces cerevisiae. During fermentation, the presence of LAB promoted the development of S. cerevisiae, while the population dynamics of LAB in different groups at different stages showed strain-specific differences. Fermentation trials involving LAB yielded a lower ethanol concentration except for Lp. plantarum ZFM715. Compared to the pure S. cerevisiae fermented sample, the addition of LAB led to a clear modulation in organic acid composition. Lb. fermentum strains in co-fermentation led to significant decreases in each classified group of aroma compounds, while Lp. plantarum ZFM715 significantly increased the complexity and intensity of aroma compounds, as well as the intensities of fruity and floral notes. The study selects interesting strains for the design of starter cultures for use in CB wine production, underlining the interest in the selection of autochthonous LAB in fruit wines, with the aim of improving the adaptation of bacteria to specific environmental conditions and shaping the unique traits of the finished products.
Selecting autochthonous lactic acid bacteria for co-inoculation in Chinese bayberry wine production: Stress response, starter cultures application and volatilomic study
Capozzi, Vittorio;
2024
Abstract
This study focused on isolating and characterising autochthonous lactic acid bacteria (LAB) from spontaneously fermented Chinese bayberry (CB) and their potential application in CB wine fermentation in co-inoculation with yeast starter cultures. Numerous LAB, including Lactiplantibacillus (Lp.) plantarum (9), Limosilactobacillus (Lb.) fermentum (6), Lactococcus (Lc.) lactis (3), Enterococcus (Ec.) hirae (1), Leuconostoc (Le.) mesenteroides (1), and Weissella (Ws.) cibaria (1), were isolated and identified. The isolated strains Lp. plantarum ZFM710 and ZFM715, together with Lb. fermentum ZFM720 and ZFM722, adapted well to unfavourable fermentation environment, including ethanol, osmolality, and acidity stresses, were selected for producing CB wine by co-inoculation with Saccharomyces cerevisiae. During fermentation, the presence of LAB promoted the development of S. cerevisiae, while the population dynamics of LAB in different groups at different stages showed strain-specific differences. Fermentation trials involving LAB yielded a lower ethanol concentration except for Lp. plantarum ZFM715. Compared to the pure S. cerevisiae fermented sample, the addition of LAB led to a clear modulation in organic acid composition. Lb. fermentum strains in co-fermentation led to significant decreases in each classified group of aroma compounds, while Lp. plantarum ZFM715 significantly increased the complexity and intensity of aroma compounds, as well as the intensities of fruity and floral notes. The study selects interesting strains for the design of starter cultures for use in CB wine production, underlining the interest in the selection of autochthonous LAB in fruit wines, with the aim of improving the adaptation of bacteria to specific environmental conditions and shaping the unique traits of the finished products.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.