Rare earth vanadate, LaVO3 (LVO) is a Mott-Hubbard insulator in which the spin, charge, and lattice degrees of freedom are intimately coupled, making them exhibit several interesting phenomena such as metal-insulator transition, ferroelectricity, 2D superconductivity etc. Epitaxial strain in LVO has a direct influence on their physical properties. This scenario provides an excellent playground to fine-tune the functionalities of LVO in electronic and spintronic devices. However, a thorough understanding of the epitaxial strain effect in LVO thin films has remained elusive due to the lack of systematic studies. This work demonstrates a wide-range epitaxial strain control of structural and electrical properties in high-quality LVO thin films. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates with a lattice mismatch ranging from -3.7 to +1.5% with respect to bulk LVO. Our results provide relevant guidelines to design LVO-based heterostructures for device applications.
Substrate driven strain effects in LaVO3 thin films grown by Pulsed Laser Deposition
Chaluvadi S. K.;Fujii J.;Vobornik I.;Mazzola F.;Orgiani P.
2023
Abstract
Rare earth vanadate, LaVO3 (LVO) is a Mott-Hubbard insulator in which the spin, charge, and lattice degrees of freedom are intimately coupled, making them exhibit several interesting phenomena such as metal-insulator transition, ferroelectricity, 2D superconductivity etc. Epitaxial strain in LVO has a direct influence on their physical properties. This scenario provides an excellent playground to fine-tune the functionalities of LVO in electronic and spintronic devices. However, a thorough understanding of the epitaxial strain effect in LVO thin films has remained elusive due to the lack of systematic studies. This work demonstrates a wide-range epitaxial strain control of structural and electrical properties in high-quality LVO thin films. The epitaxial strain was imposed by cubic or pseudocubic perovskite substrates with a lattice mismatch ranging from -3.7 to +1.5% with respect to bulk LVO. Our results provide relevant guidelines to design LVO-based heterostructures for device applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.