The near-bottom nepheloid layer in the western margin of the Southern Adriatic Sea was monitored for 8-years by measurements acquired at two mooring sites. The two moorings, equipped with CTD probes and ADCPs, are located in the Bari Canyon and in an open slope sector along the Southern Adriatic Margin. These regions are of interest because affected by episodic dense shelf water cascading events whose dynamic has direct implications on deepwater morpho-dynamic, biogeochemical cycles and trophic networks. In this work, the sedimentation f lux and its interdecadal dynamic is analysed examining in detail the sedimentary processes triggered by dense water flow through the analysis of the echo records of ADCPs. The integration of hydrodynamic, turbidity and particle grain-size data provided estimates of the sediment f lux, separating phases when the flow actively erodes the seabed from phases when particles are transported to the mooring location through density flows. The frequency and velocity of dense-water cascading currents vary in time and space reflecting the capacity of sediment transport. Data analysis demonstrated that the hydrodynamic event that mostly accounts for sediment transfer to the deep basin is represented by current pulses induced by the passage of dense waters. The average annual sediment flux has been quantified and the Bari canyon shows transport more than five time larger than in the open slope sector, confirming that the canyon is the dominant pathway of sediment transfer to the deep basin. In contrast, in the open slope, albeit a minor lateral sediment advection, is impacted by currents that are able to trigger intense resuspension of seabed sediments, which can contribute over 80% of the total solid load. This study allows unravelling the role of cascading in the sediment resuspension and transport processes and is essential to support deciphering the sedimentary records in the study area. The long temporal extent of the dataset used for quantification provides a reliable contribution to the Quaternary sediment budget determination.

Sediment resuspension and transport processes during dense water cascading events along the continental margin of the southern Adriatic Sea (Mediterranean Sea)

Paladini de Mendoza, Francesco
Primo
Conceptualization
;
Schroeder, Katrin
Secondo
Supervision
;
Miserocchi, Stefano;Borghini, Mireno;Giordano, Patrizia;Chiggiato, Jacopo;Trincardi, Fabio;Amorosi, Alessandro
Penultimo
Funding Acquisition
;
Langone, Leonardo
Ultimo
Funding Acquisition
2023

Abstract

The near-bottom nepheloid layer in the western margin of the Southern Adriatic Sea was monitored for 8-years by measurements acquired at two mooring sites. The two moorings, equipped with CTD probes and ADCPs, are located in the Bari Canyon and in an open slope sector along the Southern Adriatic Margin. These regions are of interest because affected by episodic dense shelf water cascading events whose dynamic has direct implications on deepwater morpho-dynamic, biogeochemical cycles and trophic networks. In this work, the sedimentation f lux and its interdecadal dynamic is analysed examining in detail the sedimentary processes triggered by dense water flow through the analysis of the echo records of ADCPs. The integration of hydrodynamic, turbidity and particle grain-size data provided estimates of the sediment f lux, separating phases when the flow actively erodes the seabed from phases when particles are transported to the mooring location through density flows. The frequency and velocity of dense-water cascading currents vary in time and space reflecting the capacity of sediment transport. Data analysis demonstrated that the hydrodynamic event that mostly accounts for sediment transfer to the deep basin is represented by current pulses induced by the passage of dense waters. The average annual sediment flux has been quantified and the Bari canyon shows transport more than five time larger than in the open slope sector, confirming that the canyon is the dominant pathway of sediment transfer to the deep basin. In contrast, in the open slope, albeit a minor lateral sediment advection, is impacted by currents that are able to trigger intense resuspension of seabed sediments, which can contribute over 80% of the total solid load. This study allows unravelling the role of cascading in the sediment resuspension and transport processes and is essential to support deciphering the sedimentary records in the study area. The long temporal extent of the dataset used for quantification provides a reliable contribution to the Quaternary sediment budget determination.
2023
Istituto di Scienze Marine - ISMAR
Istituto di Scienze Polari - ISP - Sede Secondaria Bologna
Cascading, Dense water, Adriatic Sea, Backscatter, Resuspension, Transport
File in questo prodotto:
File Dimensione Formato  
Paladini et al2023_MARGEO_vspublished.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.54 MB
Formato Adobe PDF
6.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/519740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact