Ice is a rich reservoir of past climate information, and the well-documented increasing rate of glacier retreat represents a great loss for paleoclimate studies. In this framework, the Ice Memory project aims to extract and analyze ice cores from glacier regions worldwide and store them in Antarctica as a heritage record for future generations of scientists. Ice coring projects usually require a focused geophysical investigation, often based on Ground Penetrating Radar (GPR) prospecting to assess the most suitable drilling positions. As a novel approach in the Calderone Glacieret, we integrated the GPR method with Frequency Domain Electromagnetic (FDEM) surveys, a technique not commonly applied in the glacial environment. We used a separated-coils FDEM instrument to characterize the glacieret structure. The acquired FDEM datasets were inverted and compared to the GPR data and borehole information. The results demonstrated the capability of the FDEM technique to define the structure of the glacieret correctly; therefore, the potential to be applied in frozen subsoil environments. This opens new perspectives for the use of the FDEM technique to characterize periglacial environments, such as rock glaciers, where the coarse-blocky surface hinders data acquisition and enhances the problem of signal scattering.

Combining Ground Penetrating Radar and Frequency Domain Electromagnetic Surveys to Characterize the Structure of the Calderone Glacieret (Gran Sasso d’Italia, Italy)

Urbini S.;Fabrizio de Blasi.;Gabrieli J.
Ultimo
2023

Abstract

Ice is a rich reservoir of past climate information, and the well-documented increasing rate of glacier retreat represents a great loss for paleoclimate studies. In this framework, the Ice Memory project aims to extract and analyze ice cores from glacier regions worldwide and store them in Antarctica as a heritage record for future generations of scientists. Ice coring projects usually require a focused geophysical investigation, often based on Ground Penetrating Radar (GPR) prospecting to assess the most suitable drilling positions. As a novel approach in the Calderone Glacieret, we integrated the GPR method with Frequency Domain Electromagnetic (FDEM) surveys, a technique not commonly applied in the glacial environment. We used a separated-coils FDEM instrument to characterize the glacieret structure. The acquired FDEM datasets were inverted and compared to the GPR data and borehole information. The results demonstrated the capability of the FDEM technique to define the structure of the glacieret correctly; therefore, the potential to be applied in frozen subsoil environments. This opens new perspectives for the use of the FDEM technique to characterize periglacial environments, such as rock glaciers, where the coarse-blocky surface hinders data acquisition and enhances the problem of signal scattering.
2023
Istituto di Scienze Polari - ISP
FDEM; EMI; GPR; Calderone Glacieret; cryosphere; environmental geophysics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact