Climate change poses significant challenges for the renovation of historic buildings, requiring a careful balance between preservation and energy efficiency, particularly considering the forecasted rise in temperatures. This study focuses on a medieval building undergoing renovation, examining thermal behaviors based on future climate settings, with particular attention to the rooms housing a book collection. Books require controlled microclimatic conditions that must be ensured for their preservation; hence, the energy use for air conditioning control must be considered during the renovation planning phase. Through on-site monitoring of the thermophysical properties of the building envelope and indoor microclimate, along with energy model software simulations, both historic climate and global warming scenarios were evaluated for their potential impact on thermal behavior and consequently on energy consumption. This study aims at contributing to the long-term sustainability and resilience of historic buildings, as well as proposing best practices for planning interventions involving sensitive cultural heritage materials, considering the effects of climate change in the renovation process. The results show strategies to address the climatic changes through a methodology optimizing renovation interventions. The sizing of air conditioning systems coupled with a less stringent microclimate control mitigates energy requirements, in line with the sustainable management approach.

Thermal Behavior of a Historic Building Housing Books Across Past and Future Climate Scenarios

Gianluca Cadelano
Primo
;
Alessandro Bortolin;Antonio della Valle;Giovanni Ferrarini;
2024

Abstract

Climate change poses significant challenges for the renovation of historic buildings, requiring a careful balance between preservation and energy efficiency, particularly considering the forecasted rise in temperatures. This study focuses on a medieval building undergoing renovation, examining thermal behaviors based on future climate settings, with particular attention to the rooms housing a book collection. Books require controlled microclimatic conditions that must be ensured for their preservation; hence, the energy use for air conditioning control must be considered during the renovation planning phase. Through on-site monitoring of the thermophysical properties of the building envelope and indoor microclimate, along with energy model software simulations, both historic climate and global warming scenarios were evaluated for their potential impact on thermal behavior and consequently on energy consumption. This study aims at contributing to the long-term sustainability and resilience of historic buildings, as well as proposing best practices for planning interventions involving sensitive cultural heritage materials, considering the effects of climate change in the renovation process. The results show strategies to address the climatic changes through a methodology optimizing renovation interventions. The sizing of air conditioning systems coupled with a less stringent microclimate control mitigates energy requirements, in line with the sustainable management approach.
2024
Istituto di Scienze dell'Atmosfera e del Clima - ISAC
Istituto per le Tecnologie della Costruzione - ITC - Sede Secondaria Padova
energy efficiency, libraries management, historical building, thermal comfort, cultural heritage conservation, indoor microclimate, historical climate, energy simulations
File in questo prodotto:
File Dimensione Formato  
heritage-07-00320.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.43 MB
Formato Adobe PDF
5.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact