In this paper, we describe an upgrade of the Alya code with up-to-date parallel linear solvers capable of achieving reliability, efficiency and scalability in the computation of the pressure field at each time step of the numerical procedure for solving a Large Eddy Simulation formulation of the incompressible Navier–Stokes equations. We developed a software module in the Alya’s kernel to interface the libraries included in the current version of PSCToolkit, a framework for the iterative solution of sparse linear systems, on parallel distributed-memory computers, by Krylov methods coupled to Algebraic MultiGrid preconditioners. The Toolkit has undergone various extensions within the EoCoE-II project with the primary goal of facing the exascale challenge. Results on a realistic benchmark for airflow simulations in wind farm applications show that the PSCToolkit solvers significantly outperform the original versions of the Conjugate Gradient method available in the Alya’s kernel in terms of scalability and parallel efficiency and represent a very promising software layer to move the Alya code toward exascale.

Alya toward exascale: algorithmic scalability using PSCToolkit

D'Ambra P.
Conceptualization
;
Durastante F.;Filippone S.
2024

Abstract

In this paper, we describe an upgrade of the Alya code with up-to-date parallel linear solvers capable of achieving reliability, efficiency and scalability in the computation of the pressure field at each time step of the numerical procedure for solving a Large Eddy Simulation formulation of the incompressible Navier–Stokes equations. We developed a software module in the Alya’s kernel to interface the libraries included in the current version of PSCToolkit, a framework for the iterative solution of sparse linear systems, on parallel distributed-memory computers, by Krylov methods coupled to Algebraic MultiGrid preconditioners. The Toolkit has undergone various extensions within the EoCoE-II project with the primary goal of facing the exascale challenge. Results on a realistic benchmark for airflow simulations in wind farm applications show that the PSCToolkit solvers significantly outperform the original versions of the Conjugate Gradient method available in the Alya’s kernel in terms of scalability and parallel efficiency and represent a very promising software layer to move the Alya code toward exascale.
2024
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
65F08
65F10
65M55
65Y05
65Z05
Algebraic MultiGrid
Iterative linear solvers
Navier–Stokes equations
Parallel scalability
File in questo prodotto:
File Dimensione Formato  
Jsupercomputing2024.pdf

accesso aperto

Descrizione: Paper su rivista
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/520687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact