e Astrocytes are non‐neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+‐mediated signaling. As they are tightly integrated into neural networks, label‐free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live‐cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3R, TRPA1, TRPV4, and Aquaporin‐4 are all involved in shaping the dynamics of infrared pulse‐evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect …

Stimulation of water and calcium dynamics in astrocytes with pulsed infrared light

Emanuela Saracino;Tamara Posati;Francesco Formaggio;Marco Caprini;Michele Muccini;Roberto Zamboni;Grazia Paola Nicchia;Valentina Benfenati
2020

Abstract

e Astrocytes are non‐neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+‐mediated signaling. As they are tightly integrated into neural networks, label‐free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live‐cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3R, TRPA1, TRPV4, and Aquaporin‐4 are all involved in shaping the dynamics of infrared pulse‐evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect …
2020
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
GLIA, WATER CHANNELS, INFRARED STIMULATION; ION CHANNELS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521340
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact