Mesoporous carbon-based (mC) hole-transporting layer-free architectures offer a cost-effective solution for the commercialization of perovskite solar cells (PSCs). Adding 5-aminovaleric acid (AVA) to MAPbI3 reduces defect concentration and enhances pore filling, while Eu enrichment in CsPbI3 reduces cation migration and enables device reusability. In this study, AVA-MAPbI3 mC-PSCs were encapsulated at room temperature (RT) with a solvent- and water-free polyurethane (PU) resin. Under continuous ambient light, RT, and 40% relative humidity (RH), the PU encapsulant acts as a barrier to extend device durability and enable reusability. The formation of a bump in the J-V curve after ∼250 h, already reported at a low scan rate but here observed at 50 mV/s, strongly reduces the photovoltaic performances. We demonstrate that the bump is not linked to the formation of PbI2 but is explained by a water-vacancy interaction that increases cation mobility and enhances screening effects near the electron-transport layer. The photovoltaic performances are fully restored by drying the devices under N2 flow for ∼48 h. A further addition of a hydrophobic Kapton tape interlayer between the PU and device mitigates bump formation, boosts t90 to ∼6000 h, and projects t80 to ∼10,800 h. Differently from the Kapton tape used alone, PU provides effective sealing all around the devices, ensuring stability in 100% RH at 90 °C and even underwater. For indoor applications, Eu:CsPbI3 mC-PSCs typically degrade from the γ- to δ-phase within ∼1 h in air, whereas PU-encapsulated devices achieve t80 ∼250 h, extendable to 1250 h with an additional closure glass slide.
Polyurethane-Encapsulated Mesoporous Carbon-Based Perovskite Solar Cells Resilient to Extreme Humidity and Mitigation of the Related Reversible J-V Bump
Valastro S.Primo
Conceptualization
;Calogero G.;Smecca E.;Arena V.;Mannino G.;Bongiorno C.;Deretzis I.;Fisicaro G.;La Magna A.;Bonomo M.;Barolo C.;Alberti A.
Ultimo
Conceptualization
2024
Abstract
Mesoporous carbon-based (mC) hole-transporting layer-free architectures offer a cost-effective solution for the commercialization of perovskite solar cells (PSCs). Adding 5-aminovaleric acid (AVA) to MAPbI3 reduces defect concentration and enhances pore filling, while Eu enrichment in CsPbI3 reduces cation migration and enables device reusability. In this study, AVA-MAPbI3 mC-PSCs were encapsulated at room temperature (RT) with a solvent- and water-free polyurethane (PU) resin. Under continuous ambient light, RT, and 40% relative humidity (RH), the PU encapsulant acts as a barrier to extend device durability and enable reusability. The formation of a bump in the J-V curve after ∼250 h, already reported at a low scan rate but here observed at 50 mV/s, strongly reduces the photovoltaic performances. We demonstrate that the bump is not linked to the formation of PbI2 but is explained by a water-vacancy interaction that increases cation mobility and enhances screening effects near the electron-transport layer. The photovoltaic performances are fully restored by drying the devices under N2 flow for ∼48 h. A further addition of a hydrophobic Kapton tape interlayer between the PU and device mitigates bump formation, boosts t90 to ∼6000 h, and projects t80 to ∼10,800 h. Differently from the Kapton tape used alone, PU provides effective sealing all around the devices, ensuring stability in 100% RH at 90 °C and even underwater. For indoor applications, Eu:CsPbI3 mC-PSCs typically degrade from the γ- to δ-phase within ∼1 h in air, whereas PU-encapsulated devices achieve t80 ∼250 h, extendable to 1250 h with an additional closure glass slide.File | Dimensione | Formato | |
---|---|---|---|
2024_ACS Appl. Energy Mater. 2024 7 12069−12083.pdf.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.59 MB
Formato
Adobe PDF
|
8.59 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2024_paper_ACS_postprint_IRIS.pdf
embargo fino al 09/12/2025
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.85 MB
Formato
Adobe PDF
|
3.85 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.