Transitive inference (TI) is a cognitive task that assesses an organism’s ability to infer novel relations between items based on previously acquired knowledge. TI is known for exhibiting various behavioral and neural signatures, such as the serial position effect (SPE), symbolic distance effect (SDE), and the brain’s capacity to maintain and merge separate ranking models. We propose a novel framework that casts TI as a probabilistic preference learning task, using one-parameter Mallows models. We present a series of simulations that highlight the effectiveness of our novel approach. We show that the Mallows ranking model natively reproduces SDE and SPE. Furthermore, extending the model using Bayesian selection showcases its capacity to generate and merge ranking hypotheses as pairs with connecting symbols. Finally, we employ neural networks to replicate Mallows models, demonstrating how this framework aligns with observed prefrontal neural activity during TI. Our innovative approach sheds new light on the nature of TI, emphasizing the potential of probabilistic preference learning for unraveling its underlying neural mechanisms.

Transitive inference as probabilistic preference learning

Mannella F.;Pezzulo G.
2024

Abstract

Transitive inference (TI) is a cognitive task that assesses an organism’s ability to infer novel relations between items based on previously acquired knowledge. TI is known for exhibiting various behavioral and neural signatures, such as the serial position effect (SPE), symbolic distance effect (SDE), and the brain’s capacity to maintain and merge separate ranking models. We propose a novel framework that casts TI as a probabilistic preference learning task, using one-parameter Mallows models. We present a series of simulations that highlight the effectiveness of our novel approach. We show that the Mallows ranking model natively reproduces SDE and SPE. Furthermore, extending the model using Bayesian selection showcases its capacity to generate and merge ranking hypotheses as pairs with connecting symbols. Finally, we employ neural networks to replicate Mallows models, demonstrating how this framework aligns with observed prefrontal neural activity during TI. Our innovative approach sheds new light on the nature of TI, emphasizing the potential of probabilistic preference learning for unraveling its underlying neural mechanisms.
2024
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Mallows model
Probabilistic inference
Serial position effect
Symbolic distance effect
Transitive inference
File in questo prodotto:
File Dimensione Formato  
2311.13874v2.pdf

solo utenti autorizzati

Descrizione: Mannella, F., Pezzulo, G. Transitive inference as probabilistic preference learning. Psychon Bull Rev (2024). https://doi.org/10.3758/s13423-024-02600-6
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521759
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact