Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and transport properties for systems composed of thousands of atoms. However, their performance is profoundly dependent on the way the empirical parameters were fitted, and the found parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities of this method, we introduce a novel Δ-learning scheme, called MLΔTB. After being trained on a custom data set composed of ab-initio band structures, the framework is able to correlate the local atomistic environment to a correction on the on-site ETB parameters, for each atom in the system. The converged algorithm is applied to simulate the electronic properties of random GaAsSb alloys, and displays remarkable agreement both with experimental and ab-initio test data. Some noteworthy characteristics of MLΔTB include the ability to be trained on few instances, to be applied on 3D supercells of arbitrary size, to be rotationally invariant, and to predict physical properties that are not exhibited by the training set.

Machine learned environment-dependent corrections for a spds∗ empirical tight-binding basis

Pecchia A.
Writing – Review & Editing
;
2024

Abstract

Empirical tight-binding (ETB) methods have become a common choice to simulate electronic and transport properties for systems composed of thousands of atoms. However, their performance is profoundly dependent on the way the empirical parameters were fitted, and the found parametrizations often exhibit poor transferability. In order to mitigate some of the the criticalities of this method, we introduce a novel Δ-learning scheme, called MLΔTB. After being trained on a custom data set composed of ab-initio band structures, the framework is able to correlate the local atomistic environment to a correction on the on-site ETB parameters, for each atom in the system. The converged algorithm is applied to simulate the electronic properties of random GaAsSb alloys, and displays remarkable agreement both with experimental and ab-initio test data. Some noteworthy characteristics of MLΔTB include the ability to be trained on few instances, to be applied on 3D supercells of arbitrary size, to be rotationally invariant, and to predict physical properties that are not exhibited by the training set.
2024
Istituto per lo Studio dei Materiali Nanostrutturati - ISMN
antimonides
atomistic simulations
electronic band structure
empirical tight-binding
III-V materials
Δ-learning
File in questo prodotto:
File Dimensione Formato  
Soccodato_2024_Mach._Learn.__Sci._Technol._5_025034.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.28 MB
Formato Adobe PDF
2.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/521996
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact