In this work we present an empirical study where we demonstrate the possibility of developing an artificial agent that is capable to autonomously explore an experimental scenario. During the exploration, the agent is able to discover and learn interesting options allowing to interact with the environment without any assigned task, and then abstract and re-use the acquired knowledge to solve the assigned tasks. We test the system in the so-called Treasure Game domain described in the recent literature and we empirically demonstrate that the discovered options can be abstracted in an probabilistic symbolic planning model (using the PPDDL language), which allowed the agent to generate symbolic plans to achieve extrinsic goals.

Option Discovery for Autonomous Generation of Symbolic Knowledge

Sartor G.;Oddi A.
;
Rasconi R.;Santucci V. G.
2022

Abstract

In this work we present an empirical study where we demonstrate the possibility of developing an artificial agent that is capable to autonomously explore an experimental scenario. During the exploration, the agent is able to discover and learn interesting options allowing to interact with the environment without any assigned task, and then abstract and re-use the acquired knowledge to solve the assigned tasks. We test the system in the so-called Treasure Game domain described in the recent literature and we empirically demonstrate that the discovered options can be abstracted in an probabilistic symbolic planning model (using the PPDDL language), which allowed the agent to generate symbolic plans to achieve extrinsic goals.
2022
Istituto di Scienze e Tecnologie della Cognizione - ISTC
978-3-031-08420-1
option discovery, intrinsic motivations, automated planning
File in questo prodotto:
File Dimensione Formato  
978-3-031-08421-8_11.pdf

solo utenti autorizzati

Descrizione: Sartor, G., Zollo, D., Cialdea Mayer, M., Oddi, A., Rasconi, R., Santucci, V.G. (2022). Option Discovery for Autonomous Generation of Symbolic Knowledge. In: Bandini, S., Gasparini, F., Mascardi, V., Palmonari, M., Vizzari, G. (eds) AIxIA 2021 – Advances in Artificial Intelligence. AIxIA 2021. Lecture Notes in Computer Science(), vol 13196. Springer, Cham. https://doi.org/10.1007/978-3-031-08421-8_11
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/522659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact