Electrochemical water splitting represents a promising alternative to conventional carbon-based energy sources. The hydrogen evolution reaction (HER) is a key process, still if conducted in alkaline media, its kinetics is slow thus requiring high amount of Pt based catalysts. Extensive research has been focused on reducing Pt utilization by pursuing careful electrode investigation. Here, a low-cost chemical methodology is reported to obtain large amount of microflowers made of interconnected NiO nanowalls (20 nm thick) wisely decorated with ultralow amounts of Pt nanoparticles. These decorated microflowers, dispersed onto graphene paper by drop casting, build a high performance HER electrode exhibiting an overpotential of only 66 mV at current density of 10 mA cm−2 under alkaline conditions. Intrinsic activity of catalyst was evaluated by measuring the Tafel plot (as low as 82 mV/dec) and turnover frequencies (2.07 s−1 for a Pt loading of 11.2 μg cm−2). The effect of Pt decoration has been modelled through energy band bending supported by electrochemical analyses. A full cell for alkaline electrochemical water splitting has been built, composed of Pt decorated NiO microflowers as cathode and bare NiO microflowers as anode, showing a low potential of 1.57 V to afford a current density of 10 mA cm−2 and a good long-term stability. The reported results pave the way towards an extensive utilization of Ni based nanostructures with ultralow Pt content for efficient electrochemical water splitting.

Physical insights into alkaline overall water splitting with NiO microflowers electrodes with ultra-low amount of Pt catalyst

Scuderi M.;Priolo F.;Terrasi A.;Mirabella S.
2022

Abstract

Electrochemical water splitting represents a promising alternative to conventional carbon-based energy sources. The hydrogen evolution reaction (HER) is a key process, still if conducted in alkaline media, its kinetics is slow thus requiring high amount of Pt based catalysts. Extensive research has been focused on reducing Pt utilization by pursuing careful electrode investigation. Here, a low-cost chemical methodology is reported to obtain large amount of microflowers made of interconnected NiO nanowalls (20 nm thick) wisely decorated with ultralow amounts of Pt nanoparticles. These decorated microflowers, dispersed onto graphene paper by drop casting, build a high performance HER electrode exhibiting an overpotential of only 66 mV at current density of 10 mA cm−2 under alkaline conditions. Intrinsic activity of catalyst was evaluated by measuring the Tafel plot (as low as 82 mV/dec) and turnover frequencies (2.07 s−1 for a Pt loading of 11.2 μg cm−2). The effect of Pt decoration has been modelled through energy band bending supported by electrochemical analyses. A full cell for alkaline electrochemical water splitting has been built, composed of Pt decorated NiO microflowers as cathode and bare NiO microflowers as anode, showing a low potential of 1.57 V to afford a current density of 10 mA cm−2 and a good long-term stability. The reported results pave the way towards an extensive utilization of Ni based nanostructures with ultralow Pt content for efficient electrochemical water splitting.
2022
Istituto per la Microelettronica e Microsistemi - IMM
All NiO electrolyzer
Catalytic effect
Hydrogen evolution reaction
Overall water splitting
Pt decorated NiO microflowers
File in questo prodotto:
File Dimensione Formato  
6 Physical insights into alkaline overall water splitting with NiO microflowers 1-s2.0-S0360319922034425-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/523818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 21
social impact