Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid–liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg−1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.
Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors
Scuderi M.;Pezzotti Escobar G.;Mirabella S.
;Bruno E.
2022
Abstract
Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid–liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg−1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides.File | Dimensione | Formato | |
---|---|---|---|
7 Engineering of Nanostructured WO3 Powders for Asymmetric Supercapacitors nanomaterials-12-04168-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.71 MB
Formato
Adobe PDF
|
2.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.