Let 1 < p < ∞, ε0 ∈]0, p − 1], Ω ⊂ Rn be a Lebesgue measurable set of positive, finite measure, and let δ : (0, p − 1] → (0, ∞) be such that δb(·):= δ(·) p−·1 is nondecreasing and bounded. We show that the linear set of functions 5 f Lebesgue measurable on Ω: 0<ε sup ≤ε0(δ(ε) k − |f(x)|p−εdx ) p−1 ε < ∞ 5 Ω does not depend on small values of ε0 if and only if δb ∈ ∆2(0+) (i.e., δb(2ε) ≤ cδb(ε) for ε small, for some c > 1), which is equivalent to say that δ ∈ ∆2(0+). This means that in the case δb ∈/ ∆2(0+), the parameter ε0 plays a crucial role in the definition of a generalized grand Lebesgue space, namely, different values of ε0 define different Banach function spaces.

THE FORGOTTEN PARAMETER IN GRAND LEBESGUE SPACES

Capone C.
;
Fiorenza A.
2023

Abstract

Let 1 < p < ∞, ε0 ∈]0, p − 1], Ω ⊂ Rn be a Lebesgue measurable set of positive, finite measure, and let δ : (0, p − 1] → (0, ∞) be such that δb(·):= δ(·) p−·1 is nondecreasing and bounded. We show that the linear set of functions 5 f Lebesgue measurable on Ω: 0<ε sup ≤ε0(δ(ε) k − |f(x)|p−εdx ) p−1 ε < ∞ 5 Ω does not depend on small values of ε0 if and only if δb ∈ ∆2(0+) (i.e., δb(2ε) ≤ cδb(ε) for ε small, for some c > 1), which is equivalent to say that δ ∈ ∆2(0+). This means that in the case δb ∈/ ∆2(0+), the parameter ε0 plays a crucial role in the definition of a generalized grand Lebesgue space, namely, different values of ε0 define different Banach function spaces.
2023
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Generalized grand Lebesgue spaces
Banach function norm
File in questo prodotto:
File Dimensione Formato  
Capone Fiorenza The forgotten.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 320.25 kB
Formato Adobe PDF
320.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/524911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact