After normalization, the distribution of gene expressions for very different organisms have a similar shape, usually exhibit heavier tails than a Gaussian distribution, and have a certain degree of asymmetry. Therefore, this distribution has been modeled in the literature using different parametric families of distributions, such the Asymmetric Laplace or the Cauchy distribution. Moreover, it is known that the tails of spot-intensity distributions are described by a power law and the variance of a given array increases with the number of genes. These features of the distribution of gene expression strongly suggest that the alpha-stable distribution is suitable to model it. In this work, we model the error distribution for gene expression data using the alpha-stable distribution. This distribution is tested successfully for four different datasets. The Kullback-Leibler, Chi-square and Hellinger tests are performed to compare how alpha-stable, Asymmetric Laplace and Gaussian fit the spot intensity distribution. The alpha-stable is proved to perform much better for every array in every dataset considered. Furthermore, using an alpha-stable mixture model, a Bayesian log-posterior odds is calculated allowing us to decide whether a gene is differently expressed or not. This statistic is based on the Scale Mixture of Normals and other well known properties of the alpha-stable distribution. The proposed methodology is illustrated using simulated data and the results are compared with the other existing statistical approach.

Modelling and assessing differential gene expression using the alpha stable distribution

Kuruoglu E E;
2009

Abstract

After normalization, the distribution of gene expressions for very different organisms have a similar shape, usually exhibit heavier tails than a Gaussian distribution, and have a certain degree of asymmetry. Therefore, this distribution has been modeled in the literature using different parametric families of distributions, such the Asymmetric Laplace or the Cauchy distribution. Moreover, it is known that the tails of spot-intensity distributions are described by a power law and the variance of a given array increases with the number of genes. These features of the distribution of gene expression strongly suggest that the alpha-stable distribution is suitable to model it. In this work, we model the error distribution for gene expression data using the alpha-stable distribution. This distribution is tested successfully for four different datasets. The Kullback-Leibler, Chi-square and Hellinger tests are performed to compare how alpha-stable, Asymmetric Laplace and Gaussian fit the spot intensity distribution. The alpha-stable is proved to perform much better for every array in every dataset considered. Furthermore, using an alpha-stable mixture model, a Bayesian log-posterior odds is calculated allowing us to decide whether a gene is differently expressed or not. This statistic is based on the Scale Mixture of Normals and other well known properties of the alpha-stable distribution. The proposed methodology is illustrated using simulated data and the results are compared with the other existing statistical approach.
2009
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Biostatistics
Gene-expression microarrays
Alpha-stable distributions
J.3 Life and Medical Sciences. Biology and genetics
G.3 Probability and Statistics. Distribution functions
92B15 General biostatistics
92D10 Genetics
60E07 Infinitely divisible distributions; stable distributions
File in questo prodotto:
File Dimensione Formato  
prod_44294-doc_130766.pdf

accesso aperto

Descrizione: Modelling and assessing differential gene expression using the alpha stable distribution
Tipologia: Versione Editoriale (PDF)
Dimensione 806.74 kB
Formato Adobe PDF
806.74 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/52834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact