Research on moving-object data analysis has been recently fostered by the widespread diffusion of new techniques and systems for monitoring, collecting and storing loca- tion aware data, generated by a wealth of technological infrastructures, such as GPS positioning and wireless networks. These have made available massive repositories of spatio-temporal data recording human mobile activities, that call for suitable analytical methods, capable of enabling the development of innovative, location-aware applica- tions [3]. The M-Atlas is the evolution of the system presented in [5] allows to handle the whole knowledge discovery process from mobility data. The analysis capabilities of M-Atlas system have been applied onto a massive real life GPS dataset, obtained from 17,000 vehicles with on-board GPS receivers under a specific car insurance contract, tracked during one week of ordinary mobile activity in the urban area of the city of Milan; the dataset contains more than 2 million observations leading to a set of more than 200,000 trajectories.
Exploring real mobility data with M-Atlas
Trasarti R;Rinzivillo S;Pinelli F;Nanni M;Monreale A;Renso C;Pedreschi D;Giannotti F
2010
Abstract
Research on moving-object data analysis has been recently fostered by the widespread diffusion of new techniques and systems for monitoring, collecting and storing loca- tion aware data, generated by a wealth of technological infrastructures, such as GPS positioning and wireless networks. These have made available massive repositories of spatio-temporal data recording human mobile activities, that call for suitable analytical methods, capable of enabling the development of innovative, location-aware applica- tions [3]. The M-Atlas is the evolution of the system presented in [5] allows to handle the whole knowledge discovery process from mobility data. The analysis capabilities of M-Atlas system have been applied onto a massive real life GPS dataset, obtained from 17,000 vehicles with on-board GPS receivers under a specific car insurance contract, tracked during one week of ordinary mobile activity in the urban area of the city of Milan; the dataset contains more than 2 million observations leading to a set of more than 200,000 trajectories.File | Dimensione | Formato | |
---|---|---|---|
prod_44365-doc_84551.pdf
non disponibili
Descrizione: Exploring real mobility data with M-Atlas
Tipologia:
Versione Editoriale (PDF)
Dimensione
258.33 kB
Formato
Adobe PDF
|
258.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.