We investigate how Raymond Queneau's \textit{Exercises in Style} are evaluated by automatic methods for detection of artificially-generated text. We work with the Queneau's original French version, and the Italian translation by Umberto Eco. We start by comparing how various methods for the detection of automatically generated text, also using different large language models, evaluate the different styles in the opera. We then link this automatic evaluation to distinct characteristic related to content and structure of the various styles. This work is an initial attempt at exploring how methods for the detection of artificially-generated text can find application as tools to evaluate the qualities and characteristics of human writing, to support better writing in terms of originality, informativeness, clarity.

You write like a GPT

Esuli A.
;
Falchi F.;Puccetti G.
2024

Abstract

We investigate how Raymond Queneau's \textit{Exercises in Style} are evaluated by automatic methods for detection of artificially-generated text. We work with the Queneau's original French version, and the Italian translation by Umberto Eco. We start by comparing how various methods for the detection of automatically generated text, also using different large language models, evaluate the different styles in the opera. We then link this automatic evaluation to distinct characteristic related to content and structure of the various styles. This work is an initial attempt at exploring how methods for the detection of artificially-generated text can find application as tools to evaluate the qualities and characteristics of human writing, to support better writing in terms of originality, informativeness, clarity.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-12-210-7060-6
GPT
Style
Generated text
Human writing
File in questo prodotto:
File Dimensione Formato  
40_main_long.pdf

accesso aperto

Descrizione: You write like a GPT
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact