The issue of how to experimentally evaluate information extraction (IE) systems has received hardly any satisfactory solution in the literature. In this paper we propose a novel evaluation model for IE and argue that, among others, it allows (i) a correct appreciation of the degree of overlap between predicted and true segments, and (ii) a fair evaluation of the ability of a system to correctly identify segment boundaries. We describe the properties of this models, also by presenting the result of a re-evaluation of the results of the CoNLL'03 and CoNLL'02 Shared Tasks on Named Entity Extraction.
Evaluating information extraction
Esuli A;Sebastiani F
2010
Abstract
The issue of how to experimentally evaluate information extraction (IE) systems has received hardly any satisfactory solution in the literature. In this paper we propose a novel evaluation model for IE and argue that, among others, it allows (i) a correct appreciation of the degree of overlap between predicted and true segments, and (ii) a fair evaluation of the ability of a system to correctly identify segment boundaries. We describe the properties of this models, also by presenting the result of a re-evaluation of the results of the CoNLL'03 and CoNLL'02 Shared Tasks on Named Entity Extraction.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
prod_44397-doc_84549.pdf
solo utenti autorizzati
Descrizione: Evaluating information extraction
Tipologia:
Versione Editoriale (PDF)
Dimensione
173.05 kB
Formato
Adobe PDF
|
173.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.