In recent years, deep learning (DL) has garnered significant attention for its successful applications across various domains in solving complex problems. This interest has spurred the development of numerous neural network architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and the more recently introduced Transformers. The choice of architecture depends on the data characteristics and the specific task at hand. In the 1D domain, one-dimensional CNNs (1D CNNs) are widely used, particularly for tasks involving the classification and recognition of 1D signals. While there are many applications of 1D CNNs in the literature, the technical details of their training are often not thoroughly explained, posing challenges for those developing new libraries in languages other than those supported by available open-source solutions. This paper offers a comprehensive, step-by-step tutorial on deriving feedforward and backpropagation equations for 1D CNNs, applicable to both regression and classification tasks. By linking neural networks with linear algebra, statistics, and optimization, this tutorial aims to clarify concepts related to 1D CNNs, making it a valuable resource for those interested in developing new libraries beyond existing ones.

Hands-On Fundamentals of 1D Convolutional Neural Networks—A Tutorial for Beginner Users

Cacciari, Ilaria
;
Ranfagni, Anedio
2024

Abstract

In recent years, deep learning (DL) has garnered significant attention for its successful applications across various domains in solving complex problems. This interest has spurred the development of numerous neural network architectures, including Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and the more recently introduced Transformers. The choice of architecture depends on the data characteristics and the specific task at hand. In the 1D domain, one-dimensional CNNs (1D CNNs) are widely used, particularly for tasks involving the classification and recognition of 1D signals. While there are many applications of 1D CNNs in the literature, the technical details of their training are often not thoroughly explained, posing challenges for those developing new libraries in languages other than those supported by available open-source solutions. This paper offers a comprehensive, step-by-step tutorial on deriving feedforward and backpropagation equations for 1D CNNs, applicable to both regression and classification tasks. By linking neural networks with linear algebra, statistics, and optimization, this tutorial aims to clarify concepts related to 1D CNNs, making it a valuable resource for those interested in developing new libraries beyond existing ones.
2024
Istituto di Fisica Applicata - IFAC
convolutional neural network
linear algebra
statistics
tutorial
File in questo prodotto:
File Dimensione Formato  
applsci-14-08500-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 767.02 kB
Formato Adobe PDF
767.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/529602
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact