The neutral ligand 1,2,4-triazolo[1,5-a]pyrimidine (tp) has been employed to prepare a new coordination compound of Fe(III), [FeCl3(tp)2]n (1). Compound 1 was investigated by single crystal X-ray diffraction and found to be a coordination polymer forming a ladder structure based on metal–ligand interactions, while H-bonding and aromatic interactions contribute to the supramolecular self-assembly into a 3D nanostructured material. The polymeric assembly is retained also in solution, where a metallo-supramolecular polymer based on coordinative metal–ligand binding is present, as shown by dynamic light scattering (DLS) measurements. The redox properties of the Fe(III) coordination polymer have also been investigated in different solvents and its nanowire structure has been assessed by Atomic Force Microscopy (AFM) imaging of the species deposited onto a freshly cleaved mica surface.

Nanowire iron(III) coordination polymer based on 1,2,4-triazolo[1,5-a]pyrimidine and chloride ligands

Isopi J.;
2019

Abstract

The neutral ligand 1,2,4-triazolo[1,5-a]pyrimidine (tp) has been employed to prepare a new coordination compound of Fe(III), [FeCl3(tp)2]n (1). Compound 1 was investigated by single crystal X-ray diffraction and found to be a coordination polymer forming a ladder structure based on metal–ligand interactions, while H-bonding and aromatic interactions contribute to the supramolecular self-assembly into a 3D nanostructured material. The polymeric assembly is retained also in solution, where a metallo-supramolecular polymer based on coordinative metal–ligand binding is present, as shown by dynamic light scattering (DLS) measurements. The redox properties of the Fe(III) coordination polymer have also been investigated in different solvents and its nanowire structure has been assessed by Atomic Force Microscopy (AFM) imaging of the species deposited onto a freshly cleaved mica surface.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
1,24-Triazolo[1,5-a]pyrimidine
Cyclic voltammetry
Scanning probe microscopy
Self-assembly
Solid state structure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534121
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact