In a 2D electron system (2DES) the breaking of the inversion, time-reversal and bulk crystal-field symmetries is interlaced with the effects of spin-orbit coupling (SOC) triggering exotic quantum phenomena. Here, epitaxial engineering is used to design and realize a 2DES characterized simultaneously by ferromagnetic order, large Rashba SOC and hexagonal band warping at the (111) interfaces between LaAlO3, EuTiO3, and SrTiO3 insulators. The 2DES displays anomalous quantum corrections to the magneto-conductance driven by the time-reversal-symmetry breaking occurring below the magnetic transition temperature. The results are explained by the emergence of a non-trivial Berry phase and competing weak anti-localization/weak localization back-scattering of Dirac-like fermions, mimicking the phenomenology of gapped topological insulators. These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.

Dirac‐Like Fermions Anomalous Magneto‐Transport in a Spin‐Polarized Oxide 2D Electron System

Chen, Yu
Primo
Methodology
;
D'Antuono, Maria;Perroni, Carmine A.;Citro, Roberta;Stornaiuolo, Daniela;Salluzzo, Marco
Ultimo
Conceptualization
2025

Abstract

In a 2D electron system (2DES) the breaking of the inversion, time-reversal and bulk crystal-field symmetries is interlaced with the effects of spin-orbit coupling (SOC) triggering exotic quantum phenomena. Here, epitaxial engineering is used to design and realize a 2DES characterized simultaneously by ferromagnetic order, large Rashba SOC and hexagonal band warping at the (111) interfaces between LaAlO3, EuTiO3, and SrTiO3 insulators. The 2DES displays anomalous quantum corrections to the magneto-conductance driven by the time-reversal-symmetry breaking occurring below the magnetic transition temperature. The results are explained by the emergence of a non-trivial Berry phase and competing weak anti-localization/weak localization back-scattering of Dirac-like fermions, mimicking the phenomenology of gapped topological insulators. These findings open perspectives for the engineering of novel spin-polarized functional 2DES holding promises in spin-orbitronics and topological electronics.
2025
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN - Sede Secondaria Napoli
Berry phase/curvature
ferromagnetic 2DES
weak anti‐localization
weak localization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534143
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact