In the context of increasing the use of sustainable materials derived from renewable, non-toxic, and biocompatible sources, dyes obtained from microorganisms have garnered significant interest, particularly for clean energy applications. This study presents a novel comparison of astaxanthin produced from three different microbial sources for dye-sensitized solar cells (DSSCs) to evaluate their photovoltaic performance. Comprehensive characterization using multiple analytical techniques (HPLC-DAD-APCI-MS, UV–vis spectroscopy, scanning electron microscopy (SEM), IV measurements, and electrochemical impedance spectroscopy (EIS)) were carried out on pigments extracted from the microalga Haematococcus pluvialis, the yeast Phaffia rhodozyma, and the bacterium Paracoccus carotinifaciens to highlight the structural differences that influence the dyes’ photoelectrochemical behavior. The results show that the DSSC based on the extract from Paracoccus carotinifaciens demonstrated the highest efficiency, recording a short-circuit current density (Jsc) of 2.86 mA/cm2, an open-circuit voltage (Voc) of 0.419 V, a fill factor (FF) of 0.3, and a power conversion efficiency (PCE) of 0.36 %.
The influence of microbial sources on astaxanthin implementation as sensitizer in dye sensitized solar cells (DSSCs)
Donatella Spadaro
Supervision
;Ilaria Citro;Maurizio Lanza;Stefano Trocino;Giuseppe Calogero
2025
Abstract
In the context of increasing the use of sustainable materials derived from renewable, non-toxic, and biocompatible sources, dyes obtained from microorganisms have garnered significant interest, particularly for clean energy applications. This study presents a novel comparison of astaxanthin produced from three different microbial sources for dye-sensitized solar cells (DSSCs) to evaluate their photovoltaic performance. Comprehensive characterization using multiple analytical techniques (HPLC-DAD-APCI-MS, UV–vis spectroscopy, scanning electron microscopy (SEM), IV measurements, and electrochemical impedance spectroscopy (EIS)) were carried out on pigments extracted from the microalga Haematococcus pluvialis, the yeast Phaffia rhodozyma, and the bacterium Paracoccus carotinifaciens to highlight the structural differences that influence the dyes’ photoelectrochemical behavior. The results show that the DSSC based on the extract from Paracoccus carotinifaciens demonstrated the highest efficiency, recording a short-circuit current density (Jsc) of 2.86 mA/cm2, an open-circuit voltage (Voc) of 0.419 V, a fill factor (FF) of 0.3, and a power conversion efficiency (PCE) of 0.36 %.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1010603024007184-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.57 MB
Formato
Adobe PDF
|
2.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.