The identification of more efficient, clean, secure, and competitive energy supply is necessary to align with the needs of sustainable devices. For this reason, a study for developing innovative dye-sensitized solar cells (DSSCs) based on microbial pigments is reported starting from Talaromyces atroroseus GH2. The fungus was cultivated by fermentation and the extracellular pigment extract was characterized by HPLC-DAD-ESI-MS analyses. The most abundant compound among the 22 azaphilone-type pigments identified was represented by PP-O. The device’s behavior was investigated in relation to electrolyte and pH for verifying the stability on time and the photovoltaic performance. Devices obtained were characterized by UV–vis measurements to verify the absorbance intensity and transmittance percentage. Moreover, photovoltaic parameters through photo-electrochemical measurements (I–V curves) and impedance characteristics by Electrochemical Impedance Spectroscopy (EIS) were determined. The best microbial device showed a short-circuit current density (Jsc) of 0.69 mA/cm2, an open-circuit photo-voltage (Voc) of 0.27 V and a Fill Factor (FF) of 0.60. Furthermore, the power conversion efficiency (PCE) of the device was 0.11%. Thus, the present study demonstrated the potential of microbial origin pigments for developing DSSCs. Graphical abstract: (Figure presented.).

Development of dye-sensitized solar cells using pigment extracts produced by Talaromyces atroroseus GH2

Spadaro D.
;
Trocino S.;Calogero G.
Ultimo
Supervision
2024

Abstract

The identification of more efficient, clean, secure, and competitive energy supply is necessary to align with the needs of sustainable devices. For this reason, a study for developing innovative dye-sensitized solar cells (DSSCs) based on microbial pigments is reported starting from Talaromyces atroroseus GH2. The fungus was cultivated by fermentation and the extracellular pigment extract was characterized by HPLC-DAD-ESI-MS analyses. The most abundant compound among the 22 azaphilone-type pigments identified was represented by PP-O. The device’s behavior was investigated in relation to electrolyte and pH for verifying the stability on time and the photovoltaic performance. Devices obtained were characterized by UV–vis measurements to verify the absorbance intensity and transmittance percentage. Moreover, photovoltaic parameters through photo-electrochemical measurements (I–V curves) and impedance characteristics by Electrochemical Impedance Spectroscopy (EIS) were determined. The best microbial device showed a short-circuit current density (Jsc) of 0.69 mA/cm2, an open-circuit photo-voltage (Voc) of 0.27 V and a Fill Factor (FF) of 0.60. Furthermore, the power conversion efficiency (PCE) of the device was 0.11%. Thus, the present study demonstrated the potential of microbial origin pigments for developing DSSCs. Graphical abstract: (Figure presented.).
2024
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Dye-sensitized solar cells (DSSCs)
Green energy
Microbial pigments
Natural dyes
Talaromyces atroroseus
File in questo prodotto:
File Dimensione Formato  
s43630-024-00566-x-4.pdf

accesso aperto

Licenza: Creative commons
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact