In the last years, the growing attention towards environmental sustainability and circular economy has led to a renewed interest in the use of eco-friendly and recyclable materials in various sectors. Developing innovative dye sensitized solar cells (DSSCs) based on microbial pigments, is very important to meet the demands of sustainable devices. Microbial extracts obtained from Talaromyces atroroseus GH2, Arthrobacter bussei CP30 and Paracoccus bogoriensis BOG6 cultivations, and characterized by HPLC-DAD-ESI-MS analyses, have been used in this work for this purpose. The extracted pigments were tested to evaluate their suitability as photosensitizers through co-sensitization method. UV–vis measurements were carried out to determine the absorbance intensity, while Photoelectrochemical and Electrochemical Impedance Spectroscopy (EIS) analyses were applied to evaluate the devices' photovoltaic parameters and impedance characteristics. The best device, obtained by the co-sensitization of the dyes produced by Talaromyces atroroseus GH2/Paracoccus bogoriensis BOG6, exhibited a Jsc of 1.59 mA/cm2, Voc of 0.35 V, FF of 0.62, and a PCE of 0.34 %. This study highlights the potential of microbial-derived pigments in the development of DSSCs.

Development of innovative dye sensitized solar cells (DSSCs) based on co-sensitization of natural microbial pigments

Spadaro D.;Citro I.;Trocino S.;Calogero G.;
2024

Abstract

In the last years, the growing attention towards environmental sustainability and circular economy has led to a renewed interest in the use of eco-friendly and recyclable materials in various sectors. Developing innovative dye sensitized solar cells (DSSCs) based on microbial pigments, is very important to meet the demands of sustainable devices. Microbial extracts obtained from Talaromyces atroroseus GH2, Arthrobacter bussei CP30 and Paracoccus bogoriensis BOG6 cultivations, and characterized by HPLC-DAD-ESI-MS analyses, have been used in this work for this purpose. The extracted pigments were tested to evaluate their suitability as photosensitizers through co-sensitization method. UV–vis measurements were carried out to determine the absorbance intensity, while Photoelectrochemical and Electrochemical Impedance Spectroscopy (EIS) analyses were applied to evaluate the devices' photovoltaic parameters and impedance characteristics. The best device, obtained by the co-sensitization of the dyes produced by Talaromyces atroroseus GH2/Paracoccus bogoriensis BOG6, exhibited a Jsc of 1.59 mA/cm2, Voc of 0.35 V, FF of 0.62, and a PCE of 0.34 %. This study highlights the potential of microbial-derived pigments in the development of DSSCs.
2024
Istituto di Tecnologie Avanzate per l'Energia - ITAE
Arthrobacter bussei
Co-sensitization
Dye sensitized solar cells (DSSCs)
Green energy
Microbial pigments
Natural dyes
Paracoccus bogoriensis
Talaromyces atroroseus
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0143720824003760-main.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.56 MB
Formato Adobe PDF
2.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/534720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact