The use of unmanned aerial vehicles (UAVs) can significantly assist landslide detection and characterization in different geological contexts at a detailed scale. This study investigated the role of UAVs in detecting a first-failure landslide occurring in Calabria, South Italy, and involving weathered granitoid rocks. After the landslide event, which caused the interruption of State Road 107, a UAV flight was carried out to identify landslide boundaries and morphological features in areas where there are problems of safe access. The landslide was classified as flow-type, with a total length of 240 m, a maximum width of 70 m, and a maximum depth of about 6.5 m. The comparison of the DTMs generated from UAV data with previously available LIDAR data indicated significant topographic changes across the landslide area. A minimum negative value of −6.3 m suggested material removal at the landslide source area. An approximate value of −2 m in the transportation area signified bed erosion and displacement of material as the landslide moved downslope. A maximum positive value of 4.2 m was found in the deposition area. The landslide volume was estimated to be about 6000 m3. These findings demonstrated the effectiveness of UAVs for landslide detection, showing their potentiality as valuable tools in planning further studies for a detailed landslide characterization and for defining the most appropriate risk mitigation measures.

The Use of an Unmanned Aerial Vehicle (UAV) for First-Failure Landslide Detection

Mercuri, Michele;Biondino, Deborah;Ciurleo, Mariantonietta;Cofone, Gino;Conforti, Massimo;Gullà, Giovanni;Stellato, Maria Carmela;Borrelli, Luigi
2024

Abstract

The use of unmanned aerial vehicles (UAVs) can significantly assist landslide detection and characterization in different geological contexts at a detailed scale. This study investigated the role of UAVs in detecting a first-failure landslide occurring in Calabria, South Italy, and involving weathered granitoid rocks. After the landslide event, which caused the interruption of State Road 107, a UAV flight was carried out to identify landslide boundaries and morphological features in areas where there are problems of safe access. The landslide was classified as flow-type, with a total length of 240 m, a maximum width of 70 m, and a maximum depth of about 6.5 m. The comparison of the DTMs generated from UAV data with previously available LIDAR data indicated significant topographic changes across the landslide area. A minimum negative value of −6.3 m suggested material removal at the landslide source area. An approximate value of −2 m in the transportation area signified bed erosion and displacement of material as the landslide moved downslope. A maximum positive value of 4.2 m was found in the deposition area. The landslide volume was estimated to be about 6000 m3. These findings demonstrated the effectiveness of UAVs for landslide detection, showing their potentiality as valuable tools in planning further studies for a detailed landslide characterization and for defining the most appropriate risk mitigation measures.
2024
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
landslide detection
landslide risk
topographic change estimation
UAV
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535123
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact