The outstanding metabolic versatility of purple non-sulphur bacteria makes these organisms an ideal candidate for developing photobioelectrochemical systems applicable in contaminated environments. Here, the effects of 2,4 dinitrophenol, a common contaminant, on purple bacteria photobioelectrocatalysis were investigated. The aromatic contaminant clearly affects current generation, with an enhanced photocurrent obtained at low dinitrophenol concentrations (0.5–1 μM), while higher values (up to 100 μM) resulted in a gradual decrease of photocurrent. The obtained electrochemical evidence, coupled to spectroscopic studies, allowed verifying the viability of the bacteria cells after exposure to dinitrophenol, and that no alteration of the photosynthetic apparatus was obtained. The results indicate that high dinitrophenol concentrations divert electrons from the extracellular electron pathway to an alternative electron sink. The present results open the door to the possible use of intact bacteria-based photoelectrodes to develop technologies for sustainable biosensors with simultaneous environmental remediation.

Photobioelectrocatalysis of Intact Photosynthetic Bacteria Exposed to Dinitrophenol

Rosa Maria Matteucci;Paolo Stufano;Massimo Trotta;Matteo Grattieri
2023

Abstract

The outstanding metabolic versatility of purple non-sulphur bacteria makes these organisms an ideal candidate for developing photobioelectrochemical systems applicable in contaminated environments. Here, the effects of 2,4 dinitrophenol, a common contaminant, on purple bacteria photobioelectrocatalysis were investigated. The aromatic contaminant clearly affects current generation, with an enhanced photocurrent obtained at low dinitrophenol concentrations (0.5–1 μM), while higher values (up to 100 μM) resulted in a gradual decrease of photocurrent. The obtained electrochemical evidence, coupled to spectroscopic studies, allowed verifying the viability of the bacteria cells after exposure to dinitrophenol, and that no alteration of the photosynthetic apparatus was obtained. The results indicate that high dinitrophenol concentrations divert electrons from the extracellular electron pathway to an alternative electron sink. The present results open the door to the possible use of intact bacteria-based photoelectrodes to develop technologies for sustainable biosensors with simultaneous environmental remediation.
2023
Istituto per i Processi Chimico-Fisici - IPCF - Sede Secondaria Bari
Istituto di Nanotecnologia - NANOTEC
biosensor
nitrophenol
photobioelectrochemistry
purple bacteria
semiartificial photosynthesis
File in questo prodotto:
File Dimensione Formato  
ChemElectroChem - 2023 - Moura Torquato - Photobioelectrocatalysis of Intact Photosynthetic Bacteria Exposed to-2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.14 MB
Formato Adobe PDF
2.14 MB Adobe PDF Visualizza/Apri
celc202300013-sup-0001-misc_information.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 250.66 kB
Formato Adobe PDF
250.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/535902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact