The strong 1980 M6.81 Irpinia earthquake in Southern Italy critically damaged the Pavoncelli hydraulic tunnel. Based on geological, petrophysical and geomechanical investigations and seismological data, a multi-scale geological model was inferred. The detrital mode and key petrophysical properties (porosity, permeability, and nanopore volumes) data have been used for defining the water-reservoir potential of the arenitic successions, with a focus on defining the hydrogeological model. The model was then used to perform a novel back-analysis of the spatial distribution of the peak ground acceleration (PGA) caused by the 1980 earthquake accounting for site-effects in a robust manner. This analysis, which accounts for site-effects in a robust manner, shows high PGA values along the length of the Pavoncelli tunnel, which is located between the causative fault of the 1980 earthquake in the vicinity of the epicenter. The main outcomes of the study are that: (1) the multi-scale and interdisciplinary approach developed in this study can be used in future studies in this and other areas, (2) the spatial 2D-3D geological model must be accounted for when analyzing distributed systems, (3) the hydrogeological model coupled with porosity data allows for reservoir analyses and (4) the complex tectonic environment in the area hosting the Pavoncelli tunnel plays a strong role in the analysis of the spatial distribution of PGA, creating the need for site-specific seismic microzonation studies and the evaluation of near-fault effects.

A geological, petrophysical and ground motion model of the Pavoncelli bis hydraulic tunnel (Southern Apennines, Italy): Implications for reservoir analyses

Cesarano M.;Matano F.
;
Critelli S.
2024

Abstract

The strong 1980 M6.81 Irpinia earthquake in Southern Italy critically damaged the Pavoncelli hydraulic tunnel. Based on geological, petrophysical and geomechanical investigations and seismological data, a multi-scale geological model was inferred. The detrital mode and key petrophysical properties (porosity, permeability, and nanopore volumes) data have been used for defining the water-reservoir potential of the arenitic successions, with a focus on defining the hydrogeological model. The model was then used to perform a novel back-analysis of the spatial distribution of the peak ground acceleration (PGA) caused by the 1980 earthquake accounting for site-effects in a robust manner. This analysis, which accounts for site-effects in a robust manner, shows high PGA values along the length of the Pavoncelli tunnel, which is located between the causative fault of the 1980 earthquake in the vicinity of the epicenter. The main outcomes of the study are that: (1) the multi-scale and interdisciplinary approach developed in this study can be used in future studies in this and other areas, (2) the spatial 2D-3D geological model must be accounted for when analyzing distributed systems, (3) the hydrogeological model coupled with porosity data allows for reservoir analyses and (4) the complex tectonic environment in the area hosting the Pavoncelli tunnel plays a strong role in the analysis of the spatial distribution of PGA, creating the need for site-specific seismic microzonation studies and the evaluation of near-fault effects.
2024
Istituto di Scienze Marine - ISMAR - Sede Secondaria Napoli
Geology
Geotechnics
Hydraulic tunnel
Italy
Petrophysics
PGA
Reservoir
Sandstone petrology
File in questo prodotto:
File Dimensione Formato  
2024_Criniti+et+al_MPG_1-s2.0-S026481722400179X.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact