The Multilingual Image-Text Classification (MITC) task is a specific instance of the Image-Text Classification (ITC) task, where each item to be classified consists of a visual representation and a textual description written in one of several possible languages. In this paper we propose MM-gFun, an extension of the gFun learning architecture originally developed for cross-lingual text classification. We extend its original text-only implementation to handle perceptual modalities.

Multimodal heterogeneous transfer learning for multilingual image-text classification

Pedrotti A.
;
Moreo Fernandez A.;Sebastiani F.
2024

Abstract

The Multilingual Image-Text Classification (MITC) task is a specific instance of the Image-Text Classification (ITC) task, where each item to be classified consists of a visual representation and a textual description written in one of several possible languages. In this paper we propose MM-gFun, an extension of the gFun learning architecture originally developed for cross-lingual text classification. We extend its original text-only implementation to handle perceptual modalities.
2024
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Heterogeneous transfer learning
Multilingual classification
Multimodal classification
File in questo prodotto:
File Dimensione Formato  
mmgfun.pdf

accesso aperto

Descrizione: Multimodal Heterogeneous Transfer Learning for Multilingual Image-Text Classification
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 191.39 kB
Formato Adobe PDF
191.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/537926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact