The Multilingual Image-Text Classification (MITC) task is a specific instance of the Image-Text Classification (ITC) task, where each item to be classified consists of a visual representation and a textual description written in one of several possible languages. In this paper we propose MM-gFun, an extension of the gFun learning architecture originally developed for cross-lingual text classification. We extend its original text-only implementation to handle perceptual modalities.
Multimodal heterogeneous transfer learning for multilingual image-text classification
Pedrotti A.
;Moreo Fernandez A.;Sebastiani F.
2024
Abstract
The Multilingual Image-Text Classification (MITC) task is a specific instance of the Image-Text Classification (ITC) task, where each item to be classified consists of a visual representation and a textual description written in one of several possible languages. In this paper we propose MM-gFun, an extension of the gFun learning architecture originally developed for cross-lingual text classification. We extend its original text-only implementation to handle perceptual modalities.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
mmgfun.pdf
accesso aperto
Descrizione: Multimodal Heterogeneous Transfer Learning for Multilingual Image-Text Classification
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
191.39 kB
Formato
Adobe PDF
|
191.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.