A growing body of research reveals that autistic individuals exhibit motor coordination challenges. Multiple theoretical frameworks propose that the seemingly disparate features of autism may arise from a common underlying process: a diminished ability to make predictions. Sensorimotor skills, such as catching a ball, critically rely on predicting the ball's trajectory as well as anticipatory coordination of the entire body. Here, we assessed four different naturalistic and virtual interception tasks with 31 neurotypical and 23 autistic children (ages 7–12). In a naturalistic setting, participants caught the ball either with their hands or a hand-held funnel with an enlarged catch area that also prevented the ball from bouncing off. A virtual setup reduced whole-body demands, as children only moved a paddle to catch or bounce a ball on a screen. Control tasks, involving rapid reaching to grasp a static object and quiet standing, which largely eliminated the requirements for prediction, were also tested. Results from all task variations demonstrated that autistic children completed fewer successful interceptions, suggesting that predictive requirements, inherent to all interception tasks, played a critical role. Effect sizes in the virtual tasks were smaller. Correlations of the task metrics with behavioral assessments rendered the strongest correlations with Praxis scores. The control tasks showed no differences between autistic and neurotypical children. These findings lend support to the emerging hypothesis that predictive challenges are present in autism. Further research with larger sample sizes will help identify to what extent these visuomotor differences may inform core domains of autism.

Interceptive abilities in autism spectrum disorder: Comparing naturalistic and virtual visuomotor tasks

Russo M.;
2024

Abstract

A growing body of research reveals that autistic individuals exhibit motor coordination challenges. Multiple theoretical frameworks propose that the seemingly disparate features of autism may arise from a common underlying process: a diminished ability to make predictions. Sensorimotor skills, such as catching a ball, critically rely on predicting the ball's trajectory as well as anticipatory coordination of the entire body. Here, we assessed four different naturalistic and virtual interception tasks with 31 neurotypical and 23 autistic children (ages 7–12). In a naturalistic setting, participants caught the ball either with their hands or a hand-held funnel with an enlarged catch area that also prevented the ball from bouncing off. A virtual setup reduced whole-body demands, as children only moved a paddle to catch or bounce a ball on a screen. Control tasks, involving rapid reaching to grasp a static object and quiet standing, which largely eliminated the requirements for prediction, were also tested. Results from all task variations demonstrated that autistic children completed fewer successful interceptions, suggesting that predictive requirements, inherent to all interception tasks, played a critical role. Effect sizes in the virtual tasks were smaller. Correlations of the task metrics with behavioral assessments rendered the strongest correlations with Praxis scores. The control tasks showed no differences between autistic and neurotypical children. These findings lend support to the emerging hypothesis that predictive challenges are present in autism. Further research with larger sample sizes will help identify to what extent these visuomotor differences may inform core domains of autism.
2024
Istituto di Scienze e Tecnologie della Cognizione - ISTC
autism
interception
motor behavior
naturalistic environment
praxis
prediction
virtual environment
File in questo prodotto:
File Dimensione Formato  
park_AutismResearch_2024.pdf

accesso aperto

Descrizione: Park, S.-W., Cardinaux, A., Crozier, D., Russo, M., Bond, S., Kjelgaard, M., Sinha, P., & Sternad, D. (2024). Interceptive abilities in autism spectrum disorder: Comparing naturalistic and virtual visuomotor tasks. Autism Research, 1–21. https://doi.org/10.1002/aur.3246
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/538556
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact