Forecasting functional time series (FTS) has arguably achieved tremendous success in recent years. Time series of curves, or functional time series, exist in many disciplines. Among the numerous existing contributions for forecasting time series, one-step-ahead functional time series forecasting, that is one-step-ahead prediction of a curve-valued time series, has been studied in several practical studies. Predominantly most traditional functional time series studies use functional (Hilbertian) autoregressive models for one-step-ahead forecast, but their application in real-world data remains a pertinent challenge due to a non-stationary behavior. Opposed to such models, several nonparametric approaches have been proposed in the recent literature for forecasting time series of curves. An analysis of the forecasting performances of such nonparametric approaches, validated empirically with a set of real experiments, is presented in this paper. While a complete understanding of these approaches remains elusive, we hope that our perspectives, discussions, and comparisons serve as a stimulus for new statistical research.

Functional time series forecasting: a systematic review

Amato U.;Antoniadis A.;De Feis I.
;
Gijbels I.
2025

Abstract

Forecasting functional time series (FTS) has arguably achieved tremendous success in recent years. Time series of curves, or functional time series, exist in many disciplines. Among the numerous existing contributions for forecasting time series, one-step-ahead functional time series forecasting, that is one-step-ahead prediction of a curve-valued time series, has been studied in several practical studies. Predominantly most traditional functional time series studies use functional (Hilbertian) autoregressive models for one-step-ahead forecast, but their application in real-world data remains a pertinent challenge due to a non-stationary behavior. Opposed to such models, several nonparametric approaches have been proposed in the recent literature for forecasting time series of curves. An analysis of the forecasting performances of such nonparametric approaches, validated empirically with a set of real experiments, is presented in this paper. While a complete understanding of these approaches remains elusive, we hope that our perspectives, discussions, and comparisons serve as a stimulus for new statistical research.
2025
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI - Sede Secondaria Napoli
Functional data analysis
Functional time series
Functional singular spectrum
Smoothing splines
k-nearest neighbors
Forecasting
File in questo prodotto:
File Dimensione Formato  
AmatoAntoniadisDeFeisGijbelsStatPapers2025.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.46 MB
Formato Adobe PDF
5.46 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/541081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact