Models of soil organic carbon (SOC) frequently overlook the effects of spatial dimensions and microbiological activities. In this paper, we focus on two reaction-diffusion chemotaxis models for SOC dynamics, both supporting chemotaxis-driven instability and exhibiting a variety of spatial patterns as stripes, spots and hexagons when the microbial chemotactic sensitivity is above a critical threshold. We use symplectic techniques to numerically approximate chemotaxis-driven spatial patterns and explore the effectiveness of the piecewise Dynamic Mode Decomposition (pDMD) to reconstruct them. Moreover, we analyse the predictive performance of the pDMD for moderate time horizons. Our findings show that pDMD is effective at precisely recreating and predicting chemotaxis-driven spatial patterns, therefore broadening the range of application of the method to classes of solutions different than Turing patterns. By validating its efficacy across a wider range of models, this research lays the groundwork for applying pDMD to experimental spatiotemporal data, advancing predictions crucial for soil microbial ecology and agricultural sustainability.

Patterns in soil organic carbon dynamics: Integrating microbial activity, chemotaxis and data-driven approaches

Angela Monti
Primo
;
Fasma Diele
;
Carmela Marangi
2025

Abstract

Models of soil organic carbon (SOC) frequently overlook the effects of spatial dimensions and microbiological activities. In this paper, we focus on two reaction-diffusion chemotaxis models for SOC dynamics, both supporting chemotaxis-driven instability and exhibiting a variety of spatial patterns as stripes, spots and hexagons when the microbial chemotactic sensitivity is above a critical threshold. We use symplectic techniques to numerically approximate chemotaxis-driven spatial patterns and explore the effectiveness of the piecewise Dynamic Mode Decomposition (pDMD) to reconstruct them. Moreover, we analyse the predictive performance of the pDMD for moderate time horizons. Our findings show that pDMD is effective at precisely recreating and predicting chemotaxis-driven spatial patterns, therefore broadening the range of application of the method to classes of solutions different than Turing patterns. By validating its efficacy across a wider range of models, this research lays the groundwork for applying pDMD to experimental spatiotemporal data, advancing predictions crucial for soil microbial ecology and agricultural sustainability.
2025
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Bari
Soil carbon dynamics, Chemotaxis Pattern formation, Symplectic methods, Data-driven methods, Dynamic Mode Decomposition
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/542041
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact