Complex perovskite oxides stabilized under high-pressure conditions constitute a rich playground for material science thanks to their multifunctional properties. Here we present the synthesis of BiCu0.4Mn0.6O3, obtained under isotropic high-pressure/high-temperature conditions. The compound crystallizes in the orthorhombic Pbam space group with a = 5.57960(16) Å, b = 11.2374(3) Å, c = 7.6603(2) Å. Disorder between Cu and Mn cations at the B site causes a significant interplay between electric and magnetic properties. Although a long-range magnetic order is not observed in neutron diffraction, BiCu0.4Mn0.6O3 displays a ferromagnetic-like transition at 330 K confined at the local scale and thermal-activated semiconductive behavior. At lower temperatures, the partial electronic localization on the Mn site changes the transport mechanism leading to 3D variable range hopping conductivity and determines the formation of an antiferromagnetic ordering at about 30 K. The presence of ferromagnetic-like room temperature state makes this material intriguing as a starting point for advanced multifunctional devices.
High-pressure high-temperature synthesis of magnetic perovskite BiCu0.4Mn0.6O3
Coppi Chiara
;Mezzadri Francesco;Migliori Andrea;Cabassi Riccardo;Trevisi Giovanna;Rancan Marzio;Armelao Lidia;Gilioli Edmondo;Delmonte Davide
2025
Abstract
Complex perovskite oxides stabilized under high-pressure conditions constitute a rich playground for material science thanks to their multifunctional properties. Here we present the synthesis of BiCu0.4Mn0.6O3, obtained under isotropic high-pressure/high-temperature conditions. The compound crystallizes in the orthorhombic Pbam space group with a = 5.57960(16) Å, b = 11.2374(3) Å, c = 7.6603(2) Å. Disorder between Cu and Mn cations at the B site causes a significant interplay between electric and magnetic properties. Although a long-range magnetic order is not observed in neutron diffraction, BiCu0.4Mn0.6O3 displays a ferromagnetic-like transition at 330 K confined at the local scale and thermal-activated semiconductive behavior. At lower temperatures, the partial electronic localization on the Mn site changes the transport mechanism leading to 3D variable range hopping conductivity and determines the formation of an antiferromagnetic ordering at about 30 K. The presence of ferromagnetic-like room temperature state makes this material intriguing as a starting point for advanced multifunctional devices.| File | Dimensione | Formato | |
|---|---|---|---|
|
s43246-025-00800-8.pdf
accesso aperto
Descrizione: High-pressure high-temperature synthesis
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


