Approximate Nearest Neighbors (ANN) search is a core task in Information Retrieval. However, the high computational demands and reliance on expensive infrastructures limit broader contributions to ANN research. Enabling efficient and effective ANN search on low-resource devices would allow researchers in low-income countries to participate in the ANN community, thereby democratizing the field. Despite its potential, the IR literature offers little work on the feasibility of ANN search under resource constraints. In this proposal, we explore efficient solutions for large-scale ANN search on low-resource devices. We report a preliminary experimentation highlighting current limitations and outlining future challenges.

Efficient approximate nearest neighbor search on a raspberry Pi

Nardini F. M.;Rulli C.;
2025

Abstract

Approximate Nearest Neighbors (ANN) search is a core task in Information Retrieval. However, the high computational demands and reliance on expensive infrastructures limit broader contributions to ANN research. Enabling efficient and effective ANN search on low-resource devices would allow researchers in low-income countries to participate in the ANN community, thereby democratizing the field. Despite its potential, the IR literature offers little work on the feasibility of ANN search under resource constraints. In this proposal, we explore efficient solutions for large-scale ANN search on low-resource devices. We report a preliminary experimentation highlighting current limitations and outlining future challenges.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
979-8-4007-1592-1
Approximate Nearest Neighbors (ANN) search
File in questo prodotto:
File Dimensione Formato  
3726302.3730268.pdf

solo utenti autorizzati

Descrizione: Efficient Approximate Nearest Neighbor Search on a Raspberry Pi
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 904.29 kB
Formato Adobe PDF
904.29 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/549724
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact