A key step to optimize the tests of semiconductors during the production process is to improve the prediction of the final yield from the defects detected on the wafers during the production process. This study investigates the link between the defects detected by a Scanning Electron Microscope (SEM) and the electrical failure of the final semiconductors, with two main objectives: (a) to identify the best layers to inspect by SEM; (b) to develop a model that predicts electrical failures of the semiconductors from the detected defects. The first objective has been reached by a model based on Odds Ratio that gave a (ranked) list of the layers that best predict the final yield. This allows process engineers to concentrate inspections on a few important layers. For the second objective, a regression/classification model based on Gradient Boosting has been developed. As a by-product, this latter model confirmed the results obtained by Odds Ratio analysis. Both models take account of the high lacunarity of the data and have been validated on two distinct datasets from STMicroelectronics.

Detecting Important Features and Predicting Yield from Defects Detected by SEM in Semiconductor Production

Amato, Umberto
;
De Feis, Italia;Gijbels, Irène;La Magna, Antonino;
2025

Abstract

A key step to optimize the tests of semiconductors during the production process is to improve the prediction of the final yield from the defects detected on the wafers during the production process. This study investigates the link between the defects detected by a Scanning Electron Microscope (SEM) and the electrical failure of the final semiconductors, with two main objectives: (a) to identify the best layers to inspect by SEM; (b) to develop a model that predicts electrical failures of the semiconductors from the detected defects. The first objective has been reached by a model based on Odds Ratio that gave a (ranked) list of the layers that best predict the final yield. This allows process engineers to concentrate inspections on a few important layers. For the second objective, a regression/classification model based on Gradient Boosting has been developed. As a by-product, this latter model confirmed the results obtained by Odds Ratio analysis. Both models take account of the high lacunarity of the data and have been validated on two distinct datasets from STMicroelectronics.
2025
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI - Sede Secondaria Napoli
Istituto per le applicazioni del calcolo - IAC - Sede Secondaria Napoli
Istituto per la Microelettronica e Microsistemi - IMM
Gradient Boosting
Odds Ratio
Scanning Electron Microscope
predictive maintenance
semiconductors
yield
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/552682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact