Cutaneous melanoma is an aggressive form of skin cancer and a leading cause of cancer-related mortality. In this sense, Raman Spectroscopy (RS) could represent a fast and effective method for melanoma-related diagnosis. We therefore introduced a new method based on RS to distinguish Compound Naevi (CN) from Primary Cutaneous Melanoma (PCM) from ex vivo solid biopsies. To this aim, integrating Confocal Raman Micro-Spectroscopy (CRM) with four Machine Learning (ML) algorithms: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and Random Forest Classifier (RFC). We focused our attention on the comparison between traditional pre-processing operations with Continuous Wavelet Transform (CWT). In particular, CWT led to the maximum classification accuracy, which was ∼89.0%, which highlighted the method as promising in view of future implementations in devices for everyday use.

Raman Spectroscopy Diagnosis of Melanoma

Lazzini, Gianmarco
;
Moroni, Davide;Salvetti, Ovidio;Laurino, Marco;D'Acunto, Mario
2025

Abstract

Cutaneous melanoma is an aggressive form of skin cancer and a leading cause of cancer-related mortality. In this sense, Raman Spectroscopy (RS) could represent a fast and effective method for melanoma-related diagnosis. We therefore introduced a new method based on RS to distinguish Compound Naevi (CN) from Primary Cutaneous Melanoma (PCM) from ex vivo solid biopsies. To this aim, integrating Confocal Raman Micro-Spectroscopy (CRM) with four Machine Learning (ML) algorithms: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machine (SVM), and Random Forest Classifier (RFC). We focused our attention on the comparison between traditional pre-processing operations with Continuous Wavelet Transform (CWT). In particular, CWT led to the maximum classification accuracy, which was ∼89.0%, which highlighted the method as promising in view of future implementations in devices for everyday use.
2025
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
Istituto di Biofisica - IBF - Sede Secondaria Pisa
Istituto di Fisiologia Clinica - IFC
Raman
Melanoma
Machine Learning
Continuous Wavelet Transform
File in questo prodotto:
File Dimensione Formato  
proceedings-129-00010 (1).pdf

accesso aperto

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/554682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact