Ultra-high molecular weight polyethylene (UHMWPE) is widely used in orthopedic and prosthetic applications due to its excellent wear resistance and biocompatibility. However, its high molecular weight presents significant challenges in terms of processing and formability, particularly at the micro scale. This study investigates the flowability characteristics of a new melt-processable UHMWPE in micro-disc geometries to evaluate its suitability for advanced prosthetic applications. Micro-injection molding experiments assessed the material’s behavior under various thermal conditions. The influence of parameters such as temperature, pressure, and disc dimensions has direct effects on the flow behavior of UHMWPE and was analyzed by simulation and experiments. Results indicate that while UHMWPE exhibits limited flow under conventional conditions, optimized processing parameters can enhance discs’ formability without compromising the material’s structural integrity, avoiding defects. These findings provide critical insights for the microfabrication of UHMWPE thin components in next-generation prosthetic devices, enabling improved design precision and functional performance.
Injection Performance of UHMWPE in Micro-Discs for Prosthetic Applications Using SLA Molds
Rossella Surace
Primo
;Francesco Modica;Vito Basile;Vincenzo Bellantone;Irene FassiUltimo
2025
Abstract
Ultra-high molecular weight polyethylene (UHMWPE) is widely used in orthopedic and prosthetic applications due to its excellent wear resistance and biocompatibility. However, its high molecular weight presents significant challenges in terms of processing and formability, particularly at the micro scale. This study investigates the flowability characteristics of a new melt-processable UHMWPE in micro-disc geometries to evaluate its suitability for advanced prosthetic applications. Micro-injection molding experiments assessed the material’s behavior under various thermal conditions. The influence of parameters such as temperature, pressure, and disc dimensions has direct effects on the flow behavior of UHMWPE and was analyzed by simulation and experiments. Results indicate that while UHMWPE exhibits limited flow under conventional conditions, optimized processing parameters can enhance discs’ formability without compromising the material’s structural integrity, avoiding defects. These findings provide critical insights for the microfabrication of UHMWPE thin components in next-generation prosthetic devices, enabling improved design precision and functional performance.| File | Dimensione | Formato | |
|---|---|---|---|
|
jmmp-09-00318-v2.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.27 MB
Formato
Adobe PDF
|
3.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


