Ultra-high molecular weight polyethylene (UHMWPE) is widely used in orthopedic and prosthetic applications due to its excellent wear resistance and biocompatibility. However, its high molecular weight presents significant challenges in terms of processing and formability, particularly at the micro scale. This study investigates the flowability characteristics of a new melt-processable UHMWPE in micro-disc geometries to evaluate its suitability for advanced prosthetic applications. Micro-injection molding experiments assessed the material’s behavior under various thermal conditions. The influence of parameters such as temperature, pressure, and disc dimensions has direct effects on the flow behavior of UHMWPE and was analyzed by simulation and experiments. Results indicate that while UHMWPE exhibits limited flow under conventional conditions, optimized processing parameters can enhance discs’ formability without compromising the material’s structural integrity, avoiding defects. These findings provide critical insights for the microfabrication of UHMWPE thin components in next-generation prosthetic devices, enabling improved design precision and functional performance.

Injection Performance of UHMWPE in Micro-Discs for Prosthetic Applications Using SLA Molds

Rossella Surace
Primo
;
Francesco Modica;Vito Basile;Vincenzo Bellantone;Irene Fassi
Ultimo
2025

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) is widely used in orthopedic and prosthetic applications due to its excellent wear resistance and biocompatibility. However, its high molecular weight presents significant challenges in terms of processing and formability, particularly at the micro scale. This study investigates the flowability characteristics of a new melt-processable UHMWPE in micro-disc geometries to evaluate its suitability for advanced prosthetic applications. Micro-injection molding experiments assessed the material’s behavior under various thermal conditions. The influence of parameters such as temperature, pressure, and disc dimensions has direct effects on the flow behavior of UHMWPE and was analyzed by simulation and experiments. Results indicate that while UHMWPE exhibits limited flow under conventional conditions, optimized processing parameters can enhance discs’ formability without compromising the material’s structural integrity, avoiding defects. These findings provide critical insights for the microfabrication of UHMWPE thin components in next-generation prosthetic devices, enabling improved design precision and functional performance.
2025
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
injection molding
micro-disc
prosthesis
UHMWPE
File in questo prodotto:
File Dimensione Formato  
jmmp-09-00318-v2.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/555307
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact