This study aims to develop an explainable Machine Learning (ML) predictive model capable of estimating the time to conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD), distinguishing whether the conversion will occur within 19 months or later, using neuropsuchological data from a single visit. Moreover, this study aims to develop even a graphical user interface (GUI) to provide this model to clinicians as an aid in clinical practice.

Explainable machine learning to predict and differentiate Alzheimer's progression

Caligiore Daniele
Secondo
;
D'Amore Fabio Massimo;Giocondo Flora;
2025

Abstract

This study aims to develop an explainable Machine Learning (ML) predictive model capable of estimating the time to conversion from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD), distinguishing whether the conversion will occur within 19 months or later, using neuropsuchological data from a single visit. Moreover, this study aims to develop even a graphical user interface (GUI) to provide this model to clinicians as an aid in clinical practice.
2025
Istituto di Scienze e Tecnologie della Cognizione - ISTC
Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD), Conversion prediction, Machine Learning (ML), Explainable AI (XAI), Neuropsychological assessments, Early diagnosis, Time-to-conversion estimation, Clinical decision support, Graphical User Interface (GUI)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/557723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ente

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact