The structural biology of amyloid-like systems has experienced significant advances due to the impressive technological and methodological advancements of experimental and computational techniques, providing unprecedented atomic-level details into the molecular architecture of these aggregates. Taking advantage of the availability of novel and complex amyloid-like protein structures, we evaluated the possibility of expanding the universe of self-assembling peptides by exploiting these structural data. We utilized transthyretin, a protein whose amyloid-like aggregation has significant pathological consequences but has never been employed to generate peptide-based materials, as a model system to develop a procedure for identifying novel self-assembling peptides. The pipeline we developed is based on the preliminary evaluation of the stability of the fragments through molecular dynamics simulations, experimental verification of the formation of cross-β assemblies in both solution and the solid state, and characterization of the functional properties of the generated biomaterial. In this framework, we demonstrate that selected transthyretin-based peptides have a strong tendency to self-assemble and form soft hydrogels. The characterization of these systems suggests that a mixture of these peptides tends to aggregate by co-assembly, mimicking the interactions that stabilize the amyloid-like structure of the parent protein. Our data emphasize the role that local structures play in the mechanical and optical properties of these assemblies.

Structural and functional characterization of self-assembling fragments identified from the transthyretin amyloid-like structure

Mercurio, Flavia Anna;Sibillano, Teresa;Giannini, Cinzia;Leone, Marilisa;Balasco, Nicole
;
Vitagliano, Luigi
2025

Abstract

The structural biology of amyloid-like systems has experienced significant advances due to the impressive technological and methodological advancements of experimental and computational techniques, providing unprecedented atomic-level details into the molecular architecture of these aggregates. Taking advantage of the availability of novel and complex amyloid-like protein structures, we evaluated the possibility of expanding the universe of self-assembling peptides by exploiting these structural data. We utilized transthyretin, a protein whose amyloid-like aggregation has significant pathological consequences but has never been employed to generate peptide-based materials, as a model system to develop a procedure for identifying novel self-assembling peptides. The pipeline we developed is based on the preliminary evaluation of the stability of the fragments through molecular dynamics simulations, experimental verification of the formation of cross-β assemblies in both solution and the solid state, and characterization of the functional properties of the generated biomaterial. In this framework, we demonstrate that selected transthyretin-based peptides have a strong tendency to self-assemble and form soft hydrogels. The characterization of these systems suggests that a mixture of these peptides tends to aggregate by co-assembly, mimicking the interactions that stabilize the amyloid-like structure of the parent protein. Our data emphasize the role that local structures play in the mechanical and optical properties of these assemblies.
2025
Istituto di Biologia e Patologia Molecolari - IBPM
Istituto di Biostrutture e Bioimmagini - IBB - Sede Napoli Via Pietro Castellino 111
Istituto di Cristallografia - IC
transthyretin
self-assembling peptides
nanostructures
File in questo prodotto:
File Dimensione Formato  
Pizzella_et_al_Nanoscale2025.pdf

accesso aperto

Descrizione: Versione Editoriale
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.31 MB
Formato Adobe PDF
5.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/559875
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact