The semantic interpretation of natural scenes, generally so obvious and effortless for humans, still remains a challenge in computer vision. We intend to design classifiers able to annotate images with keywords. Firstly, we propose an image representation appropriate for scene description: images are segmented into regions and indexed according to the presence of given region types. Secondly, we propound a classification scheme de- signed to separate images in the descriptor space. This is achieved by combining feature selection and kernel-method-based classification.

Image Classifiers for Scene Analysis

Amato G
2006

Abstract

The semantic interpretation of natural scenes, generally so obvious and effortless for humans, still remains a challenge in computer vision. We intend to design classifiers able to annotate images with keywords. Firstly, we propose an image representation appropriate for scene description: images are segmented into regions and indexed according to the presence of given region types. Secondly, we propound a classification scheme de- signed to separate images in the descriptor space. This is achieved by combining feature selection and kernel-method-based classification.
2006
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
1-4020-4178-0
File in questo prodotto:
File Dimensione Formato  
prod_91076-doc_37392.pdf

solo utenti autorizzati

Descrizione: Image
Tipologia: Versione Editoriale (PDF)
Dimensione 530.24 kB
Formato Adobe PDF
530.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/57536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact