We exploited Differential Synthetic Aperture Radar Interferometry (DInSAR) to investigate the geographical and the temporal pattern of ground deformations in the Ivancich landslide area, Assisi, Italy, in the 18.4-year period April 1992 - September 2010. We used SAR data obtained by the European Remote Sensing (ERS-1/2) satellites in the period April 1992 - July 2007, and SAR data captured by the ASAR sensor on board the Envisat satellite in the period October 2003 - September 2010. We used the Small Baseline Subset (SBAS) technique to process the SAR data, obtaining full resolution measurements for multiple radar targets inside and outside the landslide area, and the history of deformation of the individual targets. The geographical pattern of the ground deformation was found consistent with independent topographic information. The deformation time series of the individual targets were compared to the rainfall history in the area. Results revealed the lack of an immediate effect of rainfall on the ground deformation, and confirmed the existence of a complex temporal interaction between the rainfall and the ground deformation histories in the landslide area. Availability of very long, spatially distributed time series of surface deformation has provided an unprecedented opportunity to investigate the history of the active landslide area.

Preliminary analysis of a correlation between ground deformations and rainfall: the Ivancich landslide, central Italy

Ardizzone F;Rossi M;Manunta M;Mondini AC;Zeni G;Reichenbach P;Lanari R;Guzzetti F
2011

Abstract

We exploited Differential Synthetic Aperture Radar Interferometry (DInSAR) to investigate the geographical and the temporal pattern of ground deformations in the Ivancich landslide area, Assisi, Italy, in the 18.4-year period April 1992 - September 2010. We used SAR data obtained by the European Remote Sensing (ERS-1/2) satellites in the period April 1992 - July 2007, and SAR data captured by the ASAR sensor on board the Envisat satellite in the period October 2003 - September 2010. We used the Small Baseline Subset (SBAS) technique to process the SAR data, obtaining full resolution measurements for multiple radar targets inside and outside the landslide area, and the history of deformation of the individual targets. The geographical pattern of the ground deformation was found consistent with independent topographic information. The deformation time series of the individual targets were compared to the rainfall history in the area. Results revealed the lack of an immediate effect of rainfall on the ground deformation, and confirmed the existence of a complex temporal interaction between the rainfall and the ground deformation histories in the landslide area. Availability of very long, spatially distributed time series of surface deformation has provided an unprecedented opportunity to investigate the history of the active landslide area.
2011
Istituto di Ricerca per la Protezione Idrogeologica - IRPI
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
978-0-81948-806-0
Landslide (networking)
Satellites
Sensors
Synthetic aperture radar
Radar
Remote sensing
Interferometry
File in questo prodotto:
File Dimensione Formato  
prod_89037-doc_113804.pdf

non disponibili

Descrizione: Paper
Tipologia: Versione Editoriale (PDF)
Dimensione 2.07 MB
Formato Adobe PDF
2.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/59560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact