Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heterogeneous schemas. This paper presents a probabilistic framework, called sPLMap, for automatically learning schema mapping rules. Similar to LSD, different techniques, mostly from the IR field, are combined.Our approach, however, is also able to give a probabilistic interpretation of the prediction weights of the candidates, and to select the rule set with highest matching probability.

Information retrieval and machine learning for probabilistic schema matching

Straccia U
2005

Abstract

Schema matching is the problem of finding correspondences (mapping rules, e.g. logical formulae) between heterogeneous schemas. This paper presents a probabilistic framework, called sPLMap, for automatically learning schema mapping rules. Similar to LSD, different techniques, mostly from the IR field, are combined.Our approach, however, is also able to give a probabilistic interpretation of the prediction weights of the candidates, and to select the rule set with highest matching probability.
2005
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
1-59593-140-6
H.3.3 Information search and retrieval
information retrieval
File in questo prodotto:
File Dimensione Formato  
prod_91200-doc_127833.pdf

non disponibili

Descrizione: Information retrieval and machine learning for probabilistic schema matching
Tipologia: Versione Editoriale (PDF)
Dimensione 31.68 kB
Formato Adobe PDF
31.68 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/61370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact