Opinion mining is a recent subdiscipline of information retrieval which is concerned not with the topic a document is about, but with the opinion it expresses. To aid the extraction of opinions from text, recent work has tackled the issue of determining the orientation of 'subjective' terms contained in text, i.e. deciding whether a term that carries opinionated content has a positive or a negative connotation; this is believed to be of key importance for identifying the orientation of documents, i.e. determining whether a document expresses a positive or negative opinion about its subject matter We contend that the plain determination of the orientation of terms is not a realistic problem, since it starts from the non-realistic assumption that we already know whether a term is subjective or not; this would imply that a linguistic resource that marks terms as 'subjective' or 'objective' is available, which is usually not the case. In this paper we confront the task of deciding whether a given term has a positive connotation, or a negative connotation, or has no subjective connotation at all; this problem thus subsumes the problem of determining subjectivity/objectivity and the problem of determining orientation. We tackle this problem by testing three different variants of the semi-supervised method for orientation detection. Our results show that determining subjectivity and orientation is a much harder problem than determining orientation alone.

Determining term subjectivity and term orientation for opinion mining

Esuli A;Sebastiani F
2006

Abstract

Opinion mining is a recent subdiscipline of information retrieval which is concerned not with the topic a document is about, but with the opinion it expresses. To aid the extraction of opinions from text, recent work has tackled the issue of determining the orientation of 'subjective' terms contained in text, i.e. deciding whether a term that carries opinionated content has a positive or a negative connotation; this is believed to be of key importance for identifying the orientation of documents, i.e. determining whether a document expresses a positive or negative opinion about its subject matter We contend that the plain determination of the orientation of terms is not a realistic problem, since it starts from the non-realistic assumption that we already know whether a term is subjective or not; this would imply that a linguistic resource that marks terms as 'subjective' or 'objective' is available, which is usually not the case. In this paper we confront the task of deciding whether a given term has a positive connotation, or a negative connotation, or has no subjective connotation at all; this problem thus subsumes the problem of determining subjectivity/objectivity and the problem of determining orientation. We tackle this problem by testing three different variants of the semi-supervised method for orientation detection. Our results show that determining subjectivity and orientation is a much harder problem than determining orientation alone.
2006
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
1-932432-59-0
Text Classification
Opinion Mining
Sentiment Classification
Semantic Orientation
File in questo prodotto:
File Dimensione Formato  
prod_91316-doc_129931.pdf

accesso aperto

Descrizione: Determining term subjectivity and term orientation for opinion mining
Tipologia: Versione Editoriale (PDF)
Dimensione 133.36 kB
Formato Adobe PDF
133.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/61479
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 196
  • ???jsp.display-item.citation.isi??? ND
social impact