In this paper, the performance of several visual features is evaluated in automatically recognizing landmarks (monuments, statues, buildings, etc.) in pictures. A number of landmarks were selected for the test. Pictures taken from a test set were classified automatically trying to guess which landmark they contained. We evaluated both global and local features. As expected, local features performed better given their capability of being less affected to visual variations and given that landmarks are mainly static objects that generally also maintain static local features. Between the local features, SIFT outperformed SURF and ColorSIFT.
Recognizing landmarks using automated classification techniques: evaluation of various visual features
Amato G;Falchi F;Bolettieri P
2010
Abstract
In this paper, the performance of several visual features is evaluated in automatically recognizing landmarks (monuments, statues, buildings, etc.) in pictures. A number of landmarks were selected for the test. Pictures taken from a test set were classified automatically trying to guess which landmark they contained. We evaluated both global and local features. As expected, local features performed better given their capability of being less affected to visual variations and given that landmarks are mainly static objects that generally also maintain static local features. Between the local features, SIFT outperformed SURF and ColorSIFT.| File | Dimensione | Formato | |
|---|---|---|---|
|
prod_92130-doc_57614.pdf
solo utenti autorizzati
Descrizione: Articolo
Tipologia:
Versione Editoriale (PDF)
Dimensione
5.29 MB
Formato
Adobe PDF
|
5.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


