We propose a new method for detecting complex correlations in time series of limited size. The method is derived by the Spitzer's identity and proves to work successfully on different model processes, including the ARCH process, in which pairs of variables are uncorrelated, but the three point correlation function is non zero. The application to financial data allows to discriminate among dependent and independent stock price returns where standard statistical analysis fails.
A method for detecting complex correlation in time series
A Petri;L Pietronero
2007
Abstract
We propose a new method for detecting complex correlations in time series of limited size. The method is derived by the Spitzer's identity and proves to work successfully on different model processes, including the ARCH process, in which pairs of variables are uncorrelated, but the three point correlation function is non zero. The application to financial data allows to discriminate among dependent and independent stock price returns where standard statistical analysis fails.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


