The paper reports on methodology and preliminary results ofa case study in automatically extracting ontological knowledgefrom Italian legislative texts in the environmental domain. Weuse a fully-implemented ontology learning system (T2K) thatincludes a battery of tools for Natural Language Processing(NLP), statistical text analysis and machine language learn-ing. Tools are dynamically integrated to provide an incremen-tal representation of the content of vast repositories of unstruc-tured documents. Evaluated results, however preliminary, arevery encouraging, showing the great potential of NLP-poweredincremental systems like T2K for accurate large-scale semi-automatic extraction of legal ontologies.

Acquiring Legal Ontologies from Domain-specific Texts

Dell'Orletta F;Montemagni S;Marchi S;Pirrelli V;Venturi G
2008

Abstract

The paper reports on methodology and preliminary results ofa case study in automatically extracting ontological knowledgefrom Italian legislative texts in the environmental domain. Weuse a fully-implemented ontology learning system (T2K) thatincludes a battery of tools for Natural Language Processing(NLP), statistical text analysis and machine language learn-ing. Tools are dynamically integrated to provide an incremen-tal representation of the content of vast repositories of unstruc-tured documents. Evaluated results, however preliminary, arevery encouraging, showing the great potential of NLP-poweredincremental systems like T2K for accurate large-scale semi-automatic extraction of legal ontologies.
Campo DC Valore Lingua
dc.authority.orgunit Istituto di linguistica computazionale "Antonio Zampolli" - ILC -
dc.authority.people Dell'Orletta F it
dc.authority.people Lenci A it
dc.authority.people Montemagni S it
dc.authority.people Marchi S it
dc.authority.people Pirrelli V it
dc.authority.people Venturi G it
dc.collection.id.s 71c7200a-7c5f-4e83-8d57-d3d2ba88f40d *
dc.collection.name 04.01 Contributo in Atti di convegno *
dc.contributor.appartenenza Istituto di linguistica computazionale "Antonio Zampolli" - ILC *
dc.contributor.appartenenza.mi 918 *
dc.date.accessioned 2024/02/19 19:37:29 -
dc.date.available 2024/02/19 19:37:29 -
dc.date.issued 2008 -
dc.description.abstracteng The paper reports on methodology and preliminary results ofa case study in automatically extracting ontological knowledgefrom Italian legislative texts in the environmental domain. Weuse a fully-implemented ontology learning system (T2K) thatincludes a battery of tools for Natural Language Processing(NLP), statistical text analysis and machine language learn-ing. Tools are dynamically integrated to provide an incremen-tal representation of the content of vast repositories of unstruc-tured documents. Evaluated results, however preliminary, arevery encouraging, showing the great potential of NLP-poweredincremental systems like T2K for accurate large-scale semi-automatic extraction of legal ontologies. -
dc.description.affiliations Lenci Alessandro: Università di Pisa. -
dc.description.allpeople Dell'Orletta, F; Lenci, A; Montemagni, S; Marchi, S; Pirrelli, V; Venturi, G -
dc.description.allpeopleoriginal Dell'Orletta F.; Lenci A.; Montemagni S.; Marchi S.; Pirrelli V.; Venturi G. -
dc.description.fulltext none en
dc.description.numberofauthors 6 -
dc.identifier.uri https://hdl.handle.net/20.500.14243/65074 -
dc.language.iso eng -
dc.relation.conferencedate 28-29/02/2008 -
dc.relation.conferencename LangTech 2008 -
dc.relation.conferenceplace Roma -
dc.relation.firstpage 98 -
dc.relation.lastpage 101 -
dc.relation.numberofpages 4 -
dc.subject.keywords Ontology learning -
dc.subject.keywords Document management -
dc.subject.keywords knowledge extraction from texts -
dc.subject.keywords Natural Language Processing -
dc.subject.singlekeyword Ontology learning *
dc.subject.singlekeyword Document management *
dc.subject.singlekeyword knowledge extraction from texts *
dc.subject.singlekeyword Natural Language Processing *
dc.title Acquiring Legal Ontologies from Domain-specific Texts en
dc.type.driver info:eu-repo/semantics/conferenceObject -
dc.type.full 04 Contributo in convegno::04.01 Contributo in Atti di convegno it
dc.type.miur 273 -
dc.type.referee No -
dc.ugov.descaux1 84698 -
iris.orcid.lastModifiedDate 2024/04/04 13:29:10 *
iris.orcid.lastModifiedMillisecond 1712230150890 *
iris.sitodocente.maxattempts 4 -
Appare nelle tipologie: 04.01 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/65074
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact